(E)HFinverter

Huifeng Inverter

F1500-G Series
0.4~75kw

User's Manual

Thank you for your choice of HF inverter. Perfect quality and wholehearted service is guaranteed from Yantai Huifeng Electronics Co., Ltd.

As a general series of top-quality, muiltifunction and low noise, F1500-G series inverter can meet your requirements for various applications.

This manual is to provide users with precautions on installation \& debugging, parameter-setting, operation, trouble-diagnosing and daily maintenance. Please read it carefully before installation and using inverter for proper operation. This manual is provided together with inverter and should be kept properly for future use.

Indications for reading:

Hazard! Improper installation or operation likely to cause human casualty or property loss.

Warning! Improper installation or operation likely to cause human casualty or property loss.

Warning! Improper operation likely to effect inverter performance

$\mathbf{P}_{\times \times}$: indicating the relevant page number

$\operatorname{MIN}(a, b)$: indicating the lower one of values a and b

MAX(a, b): indicating the higher one of values a and b

CONTENTS

I. Operation in Safety 1
II. Products 3
2.1 Models \& Nameplate 3
2.2 Products List 3
2.3 Appearance5
2.4 Performance Indexes 6
III. Installation \& Wiring 7
3.1 Installation 7
3.2 Wiring 9
IV. Operation \& Display 16
4.1 Keypad Control Unit 16
4.2 Function Parameters Setting 18
4.3 Function Code Grouping. 19
4.4 Panel Display 19
V. Functions \& Parameters Instruction 20
5.1 Basic Parameters 20
5.2 Operation Control Parameters 24
5.3 Multi-Speed Parameters 30
5.4 Programmable Input \& Output Terminal Parameters 33
5.5 V/F Control Parameters 36
5.6 PI Setting Parameters 39
5.7 Timing Control \& Definable Protection Parameters 41
5.8 Analog signal Parameters 43
5.9 Communication Parameters 44
VI. Simple Mode of Operation 45
6.1 Operation Mode Block Diagram 45
6.2 Speed Control Mode 46
Appendix 1 Trouble Shooting 54
Appendix 2 Function-Codes Zoom Table 57
Appendix 3 Selection of Braking Resistor and Braking unit 66
Appendix 4485 Communication Control Box 68

I. Operation in Safety

Inverter is not allowed to install in a place with flammable or explosive gases in case explosion may be triggered off.
\star Only competent professionals can handle installation, wiring, operation and maintenance on inverter.
$\star \quad$ Inverter grouding terminal PE ($\xlongequal[=]{\square}$) shall be well connected to earth (grounding impedance not more than 4Ω).
$\star \quad$ Shortcircuit is not allowed between common point (CM) and reference point (GND or AGND) for inverter's internal power supply and input zero line or inverter's own " N " teminal.
$\star \quad$ Make sure that wiring is properly connected and cover-board is well fixed prior to inverter switch-on;
\star Do not touch inveter's charged terminals with hands after it is switched on.
$\star \quad$ Swich off before conducting any wiring or maintenance.
$\star \quad$ No maintenance is allowed within the first 10 minutes after switch-off or when DC bus voltage exceeds 36V. Do not touch internal circuit or components.

Warning!

$\star \quad$ Make sure for a proper input voltage with inverter before it is connected with power.
$\star \quad$ Do not drop such metal objects as screwdriver or screw into inverter.

* Do not install inverter in a place with direct sunlight. Do not stem inverter's vent.
$\star \quad$ Do not connect input power to Teminals U, V, W or PE, P, B (N).
$\star \quad$ No direct connection of braking resistor to Terminal P or N.
$\star \quad$ Control loop wiring shall be separate from power loop wiring to avoid possible interference.

Warning!

- Please read this manual carefully before any operation on inverter.
- Inverter should not be stored or installed where there is strong vibration, strong erosion, heavy dust, high temperature or greater humidity.
- Regular check shall be required for a proper wiring with inverter's input and output, and to make sure that the other wirings of the equipment are not aging.
- Check is required for motor insulation resistance before installation and operation.
- Extra cooling measures shall be necessary if motor often runs at low speed.
- Braking resistor or braking unit shall be adopted to avoid frequent over-voltage or over-current in case of negative-torque energy feedback.
- Neither variable resistor or capacitance should be connected to inverter's output to improve power factor. Do not install a breaker between inverter's output and motor. Should a breaker have to be installed, it shall be ensured that it works only when inverter output current reads
zero.
- F1500-G inverter has a safety level of IP20.
- Cleaning is recommended on inverter's internal components and radiator after it is in use for 1~3 months. Should it not be used for a long time, inverter should be switched on at a certain interval (better one month).

II. Products

2.1 Models \& Nameplate

Product model is interpreted as below (taking for instance the single-phase 1.5 KW inverter with internal braking unit)

Fig 2-1 Product Model Illustration

F1500-G series inverter's nameplate is illustrated as Fig 2-2 (taking the single-phase 1.5 KW inverter for instance).

AC : alternating current input.
1 PH : single-phase input. 220 V and $50 / 60 \mathrm{~Hz}$ stands for rated input voltage and frequency

3 PH : three-phase output. 1.5 KW and 7A stands for inverter's rated power and rated output current while $0 \sim 220 \mathrm{~V}$, inverter's output voltage range.
$0.00 \sim 400.0 \mathrm{~Hz}$: output frequency range

(E) HFinverter HUFEVGEECTRONCSCO ITO		
MODEL	F1500-G0015T3B	
INPUT	AC 3PH 380V 50/60HZ	
OUTPUT	$\begin{gathered} 3 \mathrm{PH} 1.5 \mathrm{KWW} 4.0 \mathrm{~A} 0.380 \mathrm{~V} \\ 0.00-400.0 \mathrm{HZ} \end{gathered}$	
$c \in \\|_{F}$		

2.2 Product List

F1500-G series inverter's power range: $0.2 \sim 110 \mathrm{KW}$. For main information, refer to Table 2-1.
For inverter's external dimensions and installation dimensions, please refer to 3.1.3 $\left(\mathrm{P}_{9}\right)$.

Table 2-1
F1500-G Product List

Models	Rated Input Voltage (V)	Rated Output Current (A)	Structure Code	Applicable Motor (KW)	Remarks
F1500-G0004XS2B	~ 220 (single-phase)	2.5	B1	0.4	Single-Phase Inverter (with internal braking unit)
F1500-G0007XS2B	~ 220 (single-phase)	4.5	B2	0.75	
F1500-G0015XS2B	~ 220 (single-phase)	7.0	B2	1.5	
F1500-G0022XS2B	~ 220 (single-phase)	10.0	B3	2.2	
F1500-G0037XS2B	~ 220 (single-phase)	17.0	B5	3.7	
F1500-G0004S2B	~ 220 (single-phase)	2.5	B0	0.4	Single-Phase Inverter (without internal braking unit)
F1500-G0007S2B	~ 220 (single-phase)	4.5	B0	0.75	
F1500-G0015S2B	~ 220 (single-phase)	7.0	B2	1.5	
F1500-G0022S2B	~ 220 (single-phase)	10.0	B3	2.2	
F1500-G0007T3B	~ 380 (three-phase)	2.0	B3	0.75	Three-phase inverter (with internal braking unit)
F1500-G0015T3B	~ 380 (three-phase)	4.0	B3	1.5	
F1500-G0022T3B	~ 380 (three-phase)	6.5	B3	2.2	
F1500-G0037T3B	~ 380 (three-phase)	8.0	B4	3.7	
F1500-G0040T3B	~ 380 (three-phase)	9.0	B4	4.0	
F1500-G0055T3B	~ 380 (three-phase)	12.0	B5	5.5	
F1500-G0075T3B	~ 380 (three-phase)	17.0	B5	7.5	
F1500-G0110T3C	~ 380 (three-phase)	23	C1	11	
F1500-G0150T3C	~ 380 (three-phase)	32	C2	15	
F1500-G0185T3C	~ 380 (three-phase)	38	C3	18.5	three-phase inverter (without internal braking unit)
F1500-G0220T3C	~ 380 (three-phase)	44	C3	22	
F1500-G0300T3C	~ 380 (three-phase)	60	C4	30	
F1500-G0370T3C	~ 380 (three-phase)	75	C5	37	
F1500-G0450T3C	~ 380 (three-phase)	90	C5	45	
F1500-G0550T3C	~ 380 (three-phase)	110	C6	55	
F1500-G0750T3C	~ 380 (three-phase)	150	C6	75	

2.3 Product Appearance

Exterior structure of F1500 - G series inverter is classified into plastic and metal housings. Plastic housing is shaped by mould pressing with hi-quality polymeric carbon, nice and strong with good tenacity; metal housing adopts advanced process of exterior plastic powder spraying, glossy in color and elegant in appearance.

2.3.1 Plastic Housing Appearance

Appearance and structure components are indicated as in Fig 2-3, taking F1500 - G0055T3B for an instance.

Fig 2-3 Plastic Housing

2.3.2 Metal Housing Appearance

Appearance and structure components are indicated as in Fig 2-4, taking F1500 - G0220T3C for an instance.
Detachable one-side door-hinge structure is adopted for front panel for a convenient wiring and maintenance.

1.Keypad Control Unit	6.Mounting Screw
2.Front Panel	7.Nameplate
3.Vent	8.Power Terminal
4.Body	9.Control Terminal
5.Mounting Holes	10.Outlet Hole

Fig 2-4 Metal Housing Structure

2.4 Performance Indexes

Items		Descriptions
Input	Rated Voltage	three-phase $380 \mathrm{~V} \pm 15 \%$ single-phase $220 \mathrm{~V} \pm 15 \%$ (three-phase $220 \mathrm{~V} \pm 15 \%$)
	Rated Frequency	$50 / 60 \mathrm{~Hz}(\pm 5 \%)$
Output	Rated Voltage	three-phase $0 \sim 380 \mathrm{~V}$; three-phase $0 \sim 220 \mathrm{~V}$
	Frequency Range	$0.00 \sim 400.0 \mathrm{~Hz}$ (frequency resolution ratio 0.01 Hz)
	Overload Capacity	150\% 60S
Control Mode	Frequency Setting Accuracy	Digit Setting: 0.01 Hz , Analog signal Setting: Max Frequency $\times 0.4 \%$
	Setting Mode	optimized space vector control
	V/F Curve	3 kinds of V/F curves. To select and set beeline V/F curve, polygonal line V/F curve and square V/F curve as per load
	Torque Promotion	Manual setting torque promotion within $1 \sim 15 \%$
	Automatic Voltage Setting	Automatic setting output voltage to meet input power fluctuation within certain range
	Braking Mode	DC Braking + Optimized Energy-consumption Braking
	PI Adjusting	With built-in PI adjuster for automatic control
	Jogging	Jogging Range: $0.00 \sim 400.0 \mathrm{~Hz}$
	Automatic Circular Running	User will program output frequency mode as per process requirements
Operation Functin	requency Setting	Digit frequency setting, keypad " $\mathbf{\Delta} / \mathbf{V}$ " keys setting, "UP" and "DOWN" terminals setting; Keypad potentiometer or external analog signal ($0 \sim 10 \mathrm{~V}, 0 \sim 20 \mathrm{~mA}$) setting; Analog channel compound operation setting; Multi-stage speed control and coding speed control; 485 communication control box / computer setting.
	Start/Stop Control	Control over keypad, 485 communication control box, terminals and computer
Protection Function	Input out-phase, input undervoltage, over-voltage, over-current, inverter overload, motor overload, overheat, current check trouble, peripheral equipment trouble, user password error/exterior interference, contactor monitoring.	

Display	LED nixie tube showing present output frequency, present rotate-speed, present output current, present output voltage, final axis linear-velocity, exterior pulse count-value, types of error, function-code parameters and operation parameters;	
	4 LED indicators showing the current working status of inverter.	

III. Installation \& Wiring

3.1 Installation

3.1.1 Installation Direction \& Space

For better heat radiation of inverter, it should be installed perpendicularly (as shown in Fig 3-1) while ventilation space shall be secured in the surroundings. For clearance dimensions for installation of inverter, refer to Table 3-1 (recommended).

Hanging Type
Fig 3-1 Inverter Installation Illustration

Table 3-1 Clearance Dimensions

Inverter Type	Clearance Dimensions	
Hanging Type $(<22 \mathrm{KW})$	$\mathrm{A} \geqslant 150 \mathrm{~mm}$	$\mathrm{~B} \geqslant 50 \mathrm{~mm}$
Hanging Type $(\geqslant 22 \mathrm{KW})$	$\mathrm{A} \geqslant 200 \mathrm{~mm}$	$\mathrm{~B} \geqslant 75 \mathrm{~mm}$

3.1.2 Installation Environment

- No drenching, dripping, steam, dust or oily dust; no caustic, flammable gases, liquid; no metal particles or metal powder.
- Environment temperature: within $-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$.
- Environment relative humidity: below 90\%, without water-bead coagulation.
- No strong electromagnetic interference.
- Vibration strength: below 0.5 g (acceleration).
- Ventilation should be secured should inverter be installed inside a control cabinet.

3.1.3 External Dimensions \& Installation Dimensions

Table 3-2 F1500-G Product Dimension List

Structure Code	External Dimensions $(\mathrm{A} \times \mathrm{B} \times \mathrm{H})$	nstallation Dimensions $(\mathrm{W} \times \mathrm{L})$	Mounting Screws	Remarks
B0	$105 \times 120 \times 150$	94×139	M 4	
B2	$125 \times 140 \times 170$	116×161	M5	
B3	$143 \times 148 \times 200$	132×187	M5	Plastic Housing Hanging Type
B4	$162 \times 150 \times 250$	145×233	M5	
B5	$200 \times 160 \times 300$	182×282	M6	
C1	$225 \times 220 \times 340$	160×322	M6	M6
C2	$230 \times 225 \times 380$	186×362	M6	Metal Hanging Type
C3	$265 \times 235 \times 435$	235×412	M6	M6 C4
C5	$314 \times 235 \times 480$	320×530	M10	

Fig 3-2 Dimension Code Illustration

3.2 Wiring

3.2.1 Standard Wiring Diagram

\triangle

Warning!

- Control loop wiring shall be separate from main loop wiring, and should never be laid in the same wiring duct to avoid any possible interference.
- Control wiring should adopt shielded split-conductor, with section-area of $0.3 \sim 0.5 \mathrm{~mm}^{2}$ for Lead, but signal wire should not be too long.

Wiring mode for inverter's main loop and control loop are indicated as in the followings: Fig 3-3 standard wiring diagram for single-phase inverter (including three-phase 220 VAC input inverter).

Fig 3-4 standard wiring diagram for three-phase inverter.
Note: Braking resistor and braking unit are both optional. Refer to Appendix 3 (P_{70}) for standards of optionals.

Wiring Diagram 1

Fig 3-3 Standard Wiring Layout for Single-Phase Inverter

Fig 3-4 Standard Wiring Diagram for Three-Phase Inverter

Notes:

Note 1. The broken line in Wiring Diagram 1 only applies for inverter with built-in braking unit, with Terminals P and B connected to braking resistor.

Note 2. "L3" specified in "=" in Wiring Diagram 1 is only used in three-phase AC220V input inverter. Single-phase 220 V input inverter is only connected to L 1 and L 2 .
Note 3. " J 2 " jumper terminals are not available for single-phase inverter without built-in braking unit and three-phase $11 \sim 75 \mathrm{KW}$ inverter, keypad potentiometer analog-signal (Vk) selection is set by function code F204 (F204=10).

Note 4. Terminals P and B in Wiring Diagram 2 are connected to braking resistor while Terminals P and \mathbf{N} are connected to braking unit, Terminals $\mathbf{P +}$ and \mathbf{P}, to reactor, as per main loop terminals.

3.2.2 Input \& Output Terminals

1) Power Terminals:

The wiring of power loop is very simple. R, S, T terminals of 3-phase inverter $(\mathrm{R}$ and T terminals of 1-phase inverter) shall be connected to power supply. $\mathrm{PE}(\mathrm{E})$ shall be connected to grounding. And $\mathrm{U}, \mathrm{V}, \mathrm{W}$ terminals shall be connected to motor. Motor must be grounding.

For 1-phase inverter, if the load is too heavy, the built-in braking unit can not meet the requirement. In this case, user should use external braking unit.

For 3-phase inverter with power lower than 15 kw , there is built-in braking unit. If the load is not too heavy, user can only connect braking resistance to meet the braking requirement.

This figure is only a sketch map, maybe there is some difference from actual situation.
Please refer to actual situation when inverter is used.

Table 3-3
Main Loop Terminals Description

Terminals	Terminal Marking	Terminal Function Description
Power Input Terminal	R, S, T	Three-phase 380V AC input terminal
	L1, L2, L3	For single-phase 220V AC input, connected to L1 and L2; For three-phase 220V AC input, connected to L1, L2 and L3 (Note: no "L3" terminal for single-phase inverter without built-in braking unit).
Output Terminal	U, V, W	Inverter power output terminal, connected to motor.
Terminals	Terminal Marking	Terminal Function Description
Grounding	PE	Inverter grounding terminal or connected to ground.
Terminal	P, B	External braking resistor (Note: no Terminals P or B for inverter without built-in braking unit).
Braking Terminal	P, N	DC bus-line output, externally connected to braking resistor P connected to input terminal "P" of braking unit or terminal "+", N connected to input terminal of braking unit "N" or terminal "-".
	$\mathrm{P}, \mathrm{P}+$	Externally connected to reactor

Table 3-4 Wiring Recommended for Input/Output Loop

Inverter Model	Lead Section Area $\left(\mathbf{m m}^{2}\right)$	Inverter Model	Lead Section Area $\left(\mathrm{mm}^{2}\right)$
F1500-G0004XS2B	1.5	F1500-G0040T3B	2.5
F1500-G0007XS2B	2.5	F1500-G0055T3B	4
F1500-G0015XS2B	2.5	F1500-G0075T3B	4
F1500-G0022XS2B	4.0	F1500-G0110T3C	6
F1500-G0004S2B	1.5	F1500-G0150T3C	10
F1500-G0007S2B	2.5	F1500-G0185T3C	16
F1500-G0015S2B	2.5	F1500-G0220T3C	16
F1500-G0022S2B	4.0	F1500-G0300T3C	25
F1500-G0007T3B	1.5	F1500-G0370T3C	25
F1500-G0015T3B	2.5	2.5	F1500-G0550T3C

\triangle

Warning! : Power terminal shall be tightly secured!
2) Control Terminal: Terminals of various models are structured as follows:
A) Control terminal for single-phase $1.5 \mathrm{KW}, 2.2 \mathrm{KW}$ (without built-in braking unit), single-phase $0.2 \sim$ 2.2 KW (with built-in braking unit) and three-phase $0.75 \sim 2.2 \mathrm{KW}$ inverters;

A OUT
OP5 OP6 OP7 OP8 10V AN1 (A)GND AN2 IM 24V OP1 OP2 OP3 OP4 CM TA TB TC FM

B) Control terminal for single-phase $0.4 \sim 0.75 \mathrm{KW}$ inverter (without built-in braking unit);

TA	TB	TC	OUT	24 V	CM	OP1	OP2	OP3	OP4	OP5	OP6	OP7	OP8	10 V	AN1	AGND	FM	IM	AN2

C) Control terminal for single-phase 3.7 KW , three-phase 0.4 KW and $3.7 \sim 75 \mathrm{KW}$ inverter;

OUT	$24 V$	CM	OP1	OP2	OP3	OP4	OP5	OP6	OP7	OP8	10 V	AN1	GND	FM	IM	AN2	TA	TB	TC

\triangle
Warning! : Fastening moment for control terminal: $5 \mathrm{~kg} . \mathrm{cm}$.

Table 3-5

Classificat ion	Terminal	Mfg Function	Function Description	Specification

Continued
Control Terminal Functions

Classificat ion	Terminal	Mfg Function	Function Description	Specification
Analog Output Signal	FM	Voltage Output	Output voltage is proportional to output frequency (or current).	Output voltage range: $0 \sim 10(5) \mathrm{V}$ Max output current 10 mA
	IM	Current Output	Output current is proportional to output frequency (or current).	Output current range: $0(4) \sim$ 20mA. Terminal's external load impedance not more than 500Ω.
Power Reference	10 V	Voltage Source	10 V power reference, power reference point: GND terminal.	$\begin{aligned} \mathrm{DC}: & +10 \mathrm{~V} \\ & <100 \mathrm{~mA} \end{aligned}$
 Current Analog signal Input Terminal	AN1	Voltage Input	Both terminals are used for analog signal speed control and PI setting \& feedback. Each channel can receive voltage signal input and current signal input. Input analog-signal mode is subject to jumper terminal (refer jumper-terminal)	$\begin{aligned} & \text { Input voltage: } 0 \sim 10(5) \mathrm{V} \\ & \text { Input impedance: } 78 \mathrm{~K} \Omega \\ & \hline \end{aligned}$
	AN2	Current Input		Input current: 0 (4) $\sim 20 \mathrm{~mA}$ Input impedance: 500Ω
Reference gnd	GND	$\begin{aligned} & \text { Reference } \\ & \text { gnd } \end{aligned}$	Reference gnd for 10 V voltage source	Connected with "CM", "PE" or " N " terminals is unallowed
Power Source	24 V	Control Power Supply	Accessory power-supply for input terminal. Power-supply common port is CM terminal.	$\begin{aligned} & \mathrm{DC}:+24 \mathrm{~V} \\ &<200 \mathrm{~mA} \\ & \hline \end{aligned}$
Common Port	CM	Common Port	Common port for OP1~OP8 terminal and 24 V power-supply.	Connected with "GND", "PE" or " N " terminal is unallowed.
External Control Terminal Input	OP1	Jogging Corotation	connection between this terminal and CM can affect jogging forward running.	Refer to $\mathrm{F} 408 \sim \mathrm{~F} 415\left(\mathrm{P}_{34}\right)$ for other function settings.
	OP2	Multi-stage Speed Control Terminal	"Multi-stage Speed" transfer terminal.	
	OP3			
	OP4			
	OP5	External Emergency Stop	Input emergency stop signal, and inverter will display "ESP" fault signal.	
	OP6	"FWD" Terminal	Refer to Table 5-2 (P_{29}) Terminal Control Mode for inverter terminals running control terminal.	
	OP7	$\begin{aligned} & \text { "REV" } \\ & \text { Terminal } \end{aligned}$		
	OP8	Reset	Connection between this terminal and CM can reset inverter.	

IV. OPERATION \& DISPLAY

4.1 Keypad Control Unit

4.1.1 Operation Panel Instruction

There are two types of keypad control units with F1500-G series inverter (with or without potentiometer), with two kinds of dimensions for each keypad control unit. Refer to Fig 4-1 notes.

Fig 4-1 Two Types of Keypad Control Units

4.1.2 Keypad Instruction

Table 4-1

Key Instruction

Keys	Key Name	Description		
Mode	"Mode" Key	$\begin{array}{l}\text { Entering the display mode of "function code editing"; } \\ \text { To switch for different displays in operation status to reflect various } \\ \text { parameters (P24); } \\ \text { Press this key in status of amending parameters. Return to display mode of } \\ \text { "function code editting" without saving the data amended. }\end{array}$		
Set		$\begin{array}{l}\text { "Set" Key } \\ \text { Enter "function-code parameters amending" mode from "function code } \\ \text { editting" mode. This key is used for saving data and returning to }\end{array}$		
"function-code editting" mode in the mode of "function-code parameters				
amending".			$\}$	"Up" Key
:---				
\boldsymbol{T}				

4.2 Function Parameters Setting

Users can adopt various application modes for changing function-code parameters. Please input user's password properly in F100 if parameters should be set after it is reconnected to power (user's password is 8 for manufacturer's setting or after restoring manufacture's password). Upon correct input of password, user may change his password again.

Table 4-2
Parameter Setting Steps

Step	Key	Operation	Display	
1	Mode	Press "Mode" to display function code.	FID]	
2	Stop/Reset	Press "stop/reset". If "DGT" indicator is off, press " $\mathbf{\Delta} / \boldsymbol{\nabla}$ " for selection of function-code zone; if "DGT" indicator is on, press " $\boldsymbol{\Delta} / \boldsymbol{\nabla}$ " to select the function code that need be amended in the selected function-code zone.	FIOD	
3	Δ or ∇	Press " $\mathbf{\Delta} / \boldsymbol{\nabla}$ " keys for selection of the desired function code.	F\|	1
4	Set	Press "set" key to call the data set in function-code.	20.0	
5	Stop/Rseset	Press "stop/reset" keys to select the data bit to be edited. The selected data-bit will flash to indicate that this bit is editable.	[1.7	
6	\triangle or ∇	Press " $\boldsymbol{\Delta} / \boldsymbol{\nabla}$ " for amending the selected data-bit.	[.]	
7	Set or Mode	Press "set" to save data, and return to the present function-code. Press "mode", then the amended data is invalid, displaying the present function code.	F\|	4

Table 4-2 Process is illustrated as below:

Fig 4-2 Parameter Setting Steps

4.3 Function-Codes Grouping

More than 200 function-codes are available, divided into 9 zones, as shown in Fig 4-3.
Fig 4-3 Function-Codes Grouping

Items	Function-codes	zones
Basic Parameters	F100 \sim F160	1
Operation Control Parameters	F200 \sim F260	2
Multi-stage Speed Parameters	F300 \sim F360	3
Programmable Input/Output Terminal Parameters	$\mathrm{F} 400 \sim$ F460	4
V/F Control Parameters	F500 \sim F560	5
PI Setting Parameters	$\mathrm{F} 600 \sim$ F660	6
Timing \& Definable Protection Parameters	$\mathrm{F} 700 \sim$ F760	7
Analog signal Parameters	$\mathrm{F} 800 \sim \mathrm{~F} 860$	8
Communication Parameters	$\mathrm{F} 900 \sim$ F960	9

4.4 Panel Displays

Fig 4-4
Panel Display Items \& Descriptions

Items	Descriptions
- HF-	It stands for resetting process: inverter will flash the preset frequency after resetting.
50.00	Flashing on inverter after connected to power. It is the set frequency for inverter's running. " $\boldsymbol{\Delta} / \boldsymbol{\nabla}$ " keys can set digital setting.
10.00	Steady display on control panel. It means the inverter's running frequency or parameter settings.
F112	Function-codes (parameter codes).
A 2.5	It means output current 2.5A.
U100	It means output voltage 100 V .
L 10.0	It means linear velocity of $10 \mathrm{~meters} /$ second.
100	It implies either rotate speed (100 rpm), or count values (100 pcs), to be differentiated as per the actual case by users.
1.345	It means rotate speed ($13,450 \mathrm{rpm}$)
OC1, OC2, OC3, OE1, OE2, OE3, OL1, OL2, LU, PEr, OH, AdEr, Cb, ESP, ErP, Err	Malfunction Info (refer to Appendix 1 on P_{52}).

V. Function \& Parameters Instruction

5.1 Basic Parameters

| F100 User's Code | Setting Range: $0 \sim 9999$ | Mfr Value: 8 |
| :--- | :--- | :--- | :--- |

- Enter correct user's password after power connection if you intend to change parameters. Otherwise, parameter setting will not be possible.
- Use may change "user's password", same as changing other parameters.

F102	Inverter's Rated Current (A)		Mfr Value: subject to inverter model
F103	Inverter Power (KW)	Setting Range: $0.40 \sim 75.0$	Mfr Value: power value of this inverter
F105	Software Edition No.		
F106	Inverter's Input Voltage Type	Setting Range: 1:single phase	Mfr Value: subject to inverter model
F107 Inverter's Rated Input Voltage(V)	Setting Range: 220 or 380	Mfr Value: subject to inverter model	

- Preset by manufacturer, used for recording product' power, corresponding input voltage, rated values and software edition, as info for user.

F111	Max Frequency (Hz)	Setting Range: F112~400.0	Mfr Value: 60.00

- It shows the max frequency for inverter's operation.

F112 Min Frequency (Hz)	Setting Range: $0.00 \sim \operatorname{MIN}(50.00$, F111 $)$	Mfr Value: 0.00

- It shows the min frequency for inverter's operation.
- MIN(50.00, F111): it means the lower one of the two values between 50.00 and F111.
e.g.: if $\mathrm{F} 111=40.00$, F112's setting range will be $0.00 \sim 40.00$; if $\mathrm{F} 111=60.00$, F 112 's setting range will be $0.00 \sim 50.00$.

| F113 | Digital Setting Frequency (Hz) | Setting Range: F112~F111 |
| :--- | :--- | :--- | Mfr Value: 50.00

-When inverter frequency-setting mode is "Digital Frequency Setting" (i.e., F204=0 or 1), frequency can be preset with this function-code. Inverter will automatically run to this frequency after started.

- Frequency can be set by keypad " $\boldsymbol{\Delta} / \boldsymbol{\nabla}$ " or "UP" and "DOWN" terminal.

F114, F116	$1^{\text {st }}$ and $2^{\text {nd }}$ Acceleration Time (S)	Setting Range: $0.1 \sim 3000$	Mfr Value: 20.0
F115, F117	$1^{\text {st }}$ and $2^{\text {nd }}$ Deceleration Time (S)		

- "Acceleration Time" refers to the time for inverter to accelerate to the max frequency (F111) from 0 Hz ; "Deceleration Time" refers to the time for inverter to decelerate to 0 Hz from the max frequency (F111).
- when function of programmable input teminal (OP1~OP8) is set to "16 (acceleration/ deceleration time switchover) ", this terminal can be used for switchover of first and second acceleration/ deceleration time. When a low power-level is input into this terminal, inverter will select second acceleration/ deceleration time. Otherwise, first acceleration/ deceleration time shall be default.

F118	Turnover Frequency (Hz)	Setting Range: $50.00 \sim 400.0$	Mfr Value: 50.00

- Motor's rated frequency.
- When running frequency is lower than this value, inverter will output constant-torque. When exceeding this value, inverter will output constant power. Normally 50 Hz will be selected for turnover frequency.

F119	Latent Frequency (Hz)	Setting Range: F112~F111	Mfr Value: 5.00

-When output frequency exceeds this value; it will be programmed as output status reverse for OUT terminal (or relay terminal) with "Over Latent Frequency" function; in case below this frequency, the terminal will be restored.

| F120 | Forward/reverse
 Dead-Time (S $)$ | Setting Range: $0.0 \sim 3000$ |
| :--- | :--- | :--- | :--- |\quad Mfr Value: 2.0

- This parameter refers to the transition time required during output of 0 Hz when inverter change from forward running to reverse running(as shown in Fig 5-1). To set this function may ease the current strike in the course of direction switchover.

Within "forward/reverse switchover dead-time",

Fig 5-1 Forward/reverse Switchover Time
inverter will stop immediately upon receiving "stop" signal.

		Setting Range:	
F121 \quad Stopping Mode	0: stop by deceleration time $1:$ free-stop	Mfr Value: 0	

- "Stop by Deceleration Time" means that motor controlled by inverter will slow down and stop at 0 Hz by the set deceleration time.
- "Free Stop" means that after inverter cuts off output upon receiving "stop" instruction, motor will run freely and stop by inertia. "Free Stop" mode will be selected by function-code F700 (P_{42}) (0: free stop
immediately 1: delayed free stop) and F701 (Delay time of Free-Stop and Programmable Output Terminal's Action).

F122	Reverse Running Forbidden	Setting Range: 0:null 1 : valid	Mfr Value: 0

- This function may avoid damage on equipment due to mis-operation causing motor-reverse running.

F124	Jogging Frequency (Hz)	Setting Range: F112~F111	Mfr Value: 5.00
F125	Jogging Acceleration Time(S)	Setting Range: $0.1 \sim 3000$	Mfr Value: 20.0
F126	Jogging Deceleration Time (S)		

-Jogging function only applies to teminal control mode $(\mathrm{F} 200=1)$.
\cdot Jogging operation can be realized by connected CM with the programmable input terminal $(\mathrm{OP} 1 \sim \mathrm{OP} 8)$ defined as jogging function.

- Systematic vibration may occur when the motor is running at a certain frequency. This parameter is set to skip this frequency.
- The inverter will skip the point automatically when output frequency is equal to the set value of this parameter.
- "Skip Width" is the span from the upper to the lower limit around Skip Frequency.

- As shown in Fig 5-3: Skip Frequency=20Hz, Skip Width=5.00, inverter will skip automatically when output is between $17.5 \sim 22.5 \mathrm{~Hz}$.

F131		Setting Range: 1~127	
		1: Frequency 2: Rotate Speed	
		4:Count Values 8: Output Current	Mfr Values: 127
	16: Function-Code Editing		
	32:Output Voltage 64:Linear Velocity		
	127: Display All		

- Selection of any value from $1,2,4,8,16,32$ and 64 shows that only one specific display item is selected. Should multiple display items be intended, add the values of the corresponding display items and take the total values as the set value of F131, e.g., just set F131 to be $25(1+8+16)$ if you want to call "frequency", "output current" and "function-code editing". The other display items will not appear.
- As F131 $=127$, all display items are visible, of which, "function-code editing" will be visible

Display	Indication	Unit
Frequency	50.00	Hz
Rotate Speed	300	rpm
Count Value	1.345	$10,000 \mathrm{rpm}$
Output Current	A 3.5	Ampere
Function-Code Editing	F112	
Output Voltage	U100	Volt
Linear Velocity	L7.85	meter/second

- Should you intend to check any display item, just press "mode" for switchover.
- Refer to the right table for each specific physical unit and its indication:

F132	Number of motor pole pairs	Setting Range: $1 \sim 6$	Mfr Value: 2
F133	Driven system's drive ratio	Setting Range: $0.1 \sim 100.0$	Mfr Value: 1.0
F134	Transmission-wheel radius (m)	Setting Range: $0.001 \sim 1.000$	Mfr Value: 0.001

- Calculation of retoting speed and linear velocity:

If inverter's max frequency $\mathrm{F} 111=50.00 \mathrm{~Hz}$, number of motor pole pairs $\mathrm{F} 132=2$, drive-ratio $\mathrm{F} 133=$
1.0, Transmission-wheel radius $\mathrm{F} 134=0.05 \mathrm{~m}$, then

Transmission-wheel perimeter: $2 \pi \mathrm{r}=2 \times 3.14 \times 0.05=0.314$ (meter)
Transmission shaft rotate speed: [$60 \times$ operation frequency/(number of pole pairs \times drive ratio) $]$ $\times(1-0.03)=60 \times 50 /(2 \times 1.00) \times(1-0.03)=1455 \mathrm{rpm}$

(0.03: slip ratio)

final linear velocity:rotate speed \times perimeter $=1455 \times 0.314=456.87($ meter $/$ minute $)=7.61($ meter $/$ second $)$

F139 whether to start automatically after reconnection to power or malfunction

Setting Range: 0: null 1 : valid Mfr Value: 0

- This function means that inverter is reconnected after power disconnection or whether it can be started automatically after malfunction protection. If inverter is selected "null", it shall start to operate only after receiving "run" signal.
- After auto start by inverter, F705 and F706(P_{42}) shall set the times and intervals for auto-start.
- This function only applies to control modes of keypad control $(\mathrm{F} 200=0)$, 3-line control $(\mathrm{F} 200=1$, $\mathrm{F} 208=$ 2 or 3) and direction-pulse controlled start/stop (F200=1 and F208=4).

		Setting Range:	
F160	Reverting to manufacturer values	$0:$ Not reverting to manufacturer values;	Mfr Value: 0
	$1:$ Reverting to manufacturer values		

- Set F160 to 1 when there is disorder with inverter's parameters and manufacturer values need to be restored.
- After "Reverting to manufacturer values" is done, F160 values will be automatically changed to 0 .

Fig 5-4 Reverting to manufacturer values

- "Reverting to manufacturer values"will not work for the function-codes marked " \bigcirc "in the "Note" column in the Appendix 2 Function-Code Zoom Table.

5.2 Operation Control Parameters

		Setting Range:	
F200	Operation Control	0: Keypad Control/485Communication Control	Mfr Value: 0
		1: Terminal Control	
	2: Computer Remote Control		

"Keypad Control/485Communication Control" means that inverter's running is controlled by keypad or control box connected by 485 -communication interface. Motor's rotate-direction is set by F207 (P_{28}) .
. "Terminal Control" shall control inverter's operation through programmable input terminal named with "FWD", "REV"and "X" functions (OP1~OP8). Four control modes are available in mode of terminal control. Refer to function-code F208 (P_{28}).

- "Computer Remote Control" means that computer will control inverter's operation through 485-communication interface.

F201 Stop/Reset	Key Functions	Setting Range: 0 : valid only in mode of keypad control 1: valid in any modes 2: valid at time of keypad, terminal 3-line control, controlling start/stop by direction pulse and computer remote control	Mfr Value: 0

\cdot As $\mathrm{F} 201=0$, and in mode of keypad control, press this key during running, inverter will stop by deceleration time.

- As $\mathrm{F} 201=1$, and in mode of keypad control, press this key during running, inverter will stop by deceleration time; in mode of terminal control or computer remote control, press this key during running, inverter will stop. Meanwhile, keypad control unit will display error signal "ESP".
- As $\mathrm{F} 201=2$, this key will work in modes of keypad, terminal 3-line control, start/stop controlld by direction-pulse, code-timing and computer remote control. Press this key during running, inverter will stop by deceleration time.
- As inverter is having stalling operation, press this key during running, inverter will stop. Meanwhile, keypad control unit will display error signal "ESP".

- Multi-stage speed control includes multi-stage speed running, automatic circulating running and 8 -stage speed running, to be selected by function-code F210 $\left(\mathrm{P}_{29}\right)$. Running frequency of stage speed can be adjusted
with keypad " $\mathbf{\Delta} / \mathbf{\nabla}$ " keys or "UP" and "DOWN" terminals The result of frequency adjusting is unsaved when power off. Refer to 5.3 Multi-stage Speed Parameters (P_{31}) for relevant function parameters setting.
- In case of speed control with analog signal, please set F800, F801, F807 and F808 (P_{41}) according to the input of actual analog signal and frequency setting requirements. Meanwhile, select the input analog type through jumper terminal.

Input analog will set inverter's running frequency or PI adjusting.

- Speed-control set by pulse-frequency means that inverter will be controlled through pulse-frequency input by OP1 terminal ($\mathrm{F} 408=23$) from peripheral equipment.

Refer to F809 and F810 (P_{45}) for relevant function parameters.

- In case of code speed-control, frequency will be set by input terminal programmed with code speed control function (this terminal function is defined as 18):

Code Speed-Control Frequency=binary-digit of terminal-input $*$ max frequency $/ 255$
While using code speed control, input terminal function of input terminal OP1~OP8 can be redefined.

- Refer to 6.2 Speed Control Mode (P_{47}) for various speed control modes.

Use of Jumper Terminal

Near inverter's control terminals are three jumper terminals J2, J3 and J4 (as shown in the right diagram). The black section shows the location of short-circuit needle, reflecting the manufacturer's setting status. Jumper-terminals have the function of selecting input mode of external analog signal - analog signal for external voltage, external current and keypad-control-unit's voltage.
Reference voltage of 10 V is available for user's choice with inverter's
 terminal.
"AN1" channel analog input type is selected by J3. "AN2" channel analog input type is selected by J4: As short-circuit needle is set on "I"side, $0(4) \sim 20 \mathrm{~mA}$ current can be input; as short-circuit needle is set on "U" side, $0 \sim 10(5) \mathrm{V}$ can be input.

J2 is used to select between "AN1" channel input and keypad potentiometer input. It won't be necessary to change J2's manufacturer's setting if keypad control unit doesn't have potentiometer with itself.

Note 3: there is no "J2" jumper terminal for single-phase inverter without built-in braking unit and three-phase $11 \sim 110 \mathrm{KW}$ inverter. Selection of keypad potentiometer $\operatorname{analog}(\mathrm{Vk})$ is set by function code F 204 ($\mathrm{F} 204=10-\mathrm{P}_{26}$).

Fig 5-1 Jumper Terminal Status Vs Corresponding Function Realised

Function Realised	Jumper-	minal Status	Function Realised	Jumper-Terminal Status
Input voltage analog through analog channel 1(AN1)			Input voltage analog through analog channel 2(AN2)	
Input current analog through analog channel 1(AN1)			Input current analog through analog channel 2(AN2)	
Input voltage analog of keypad control unit (only for keypad control unit with potentiometer)				
F207 Keypad Direction Set		Setting Range: 0:forward; 1:reverse		Mfr Value: 0

- In mode of keypad control $(\mathrm{F} 200=0)$, set motor's running direction.

	Setting Range:		
F208	Terminal Control Mode	1:two-line type 1	
		2: three-line type 2	Mfr Value: 0 1
	3:three-line type 2		
	4:start/stop controlled by direction pulse		

- Five modes are available for terminal operation control. As shown in Fig 5-2, "○○"stands for switch-on, "oт" for normally closed contact, " $\frac{\perp}{\circ \circ}$ " for normally open contact. "FWD", "REV" and "X" are
three terminals designated in programming $\mathrm{OP} 1 \sim \mathrm{OP} 8$.
Fig 5-2 Terminal Control Mode

F208	Terminal Function Realised and Control-Loop Wiring
0 : two-line type 1 forward/stop reverse/stop	$-\bar{\circ}-\bar{\circ}-$ "FWD" terminal-"open": stop, "close": forward running "REV" terminal-"open": stop, "close": reverse running "CM" terminal-common end
1: two-line type 2 reverse/forward running/stop	
2: three-line type 1 forward running/stop reverse running/stop	
3:three-line type 2 forward running/stop reverse running/stop	
4: start/stop controlled by direction impluse forward running/stop reverse running/stop	

F209 Stage-Speed Changing Control	Setting Range: 0 : adjusting stage-speed forbidden 1: adjusting stage-speed allowed	Mfr Value: 0
F210 Stage-Speed Types	Setting Range: 0 : multi-stage speed running 1 :Auto circulating running 2: 8 -stage speed running	Mfr Value: 0

F211	Auto Circulating Running Speed Selection	Setting Range: $2 \sim 7$	Mfr Value: 7
F212	Auto Circulating Running Times Selection	Setting Range: $0 \sim 9999$	Mfr Value: 0
F213	Free Running Selection after Auto Circulating Running	Setting Range: $0:$ stop 1: keep running at last stage speed	Mfr Value: 0

- Stage-Speed change control means whether keypad " $\mathbf{\Delta} / \boldsymbol{\nabla}$ "keys or "UP" and "DOWN" terminals will be used during multistage speed running to adjust the present running speed. F230 (P31) sets step-length for each adjusting. This setting will not change function-code parameters, and will not be saved in memory when power disconnected. Parameters set by function-code will therefore be called for multistage speed frequency again when power reconnected.
- "Once" means auto circulating running at all fixed stage speeds for one time.
- If F212 $=0$, inverter will keep circulating running until it is stopped by "stop signal".
- If F212>0, inverter will finish auto circulating running in the mode set by F213 after inverter makes circulating running for the fixed times (to be set by F212): if F213=0, then it will stop; if $\mathrm{F} 213=1$, then running will be kept at the last speed.

Fig 5-5 Auto Circulating Running
e.g.: $\mathrm{F} 211=3, \mathrm{~F} 212=100, \mathrm{~F} 213=1$, select auto circulating running at 3 speeds for 100 times. After auto circulating running, keep running at $3^{\text {rd }}$ speed.

| F214 | k1 | Setting Range: $0.0 \sim 10.0$ | Mfr Value: 1.0 |
| :--- | :--- | :--- | :--- | :--- |
| F215 | k2 | Setting Range: $0.0 \sim 10.0$ | Mfr Value: 1.0 |

$\cdot \mathrm{k} 1$ and k 2 are proportion parameters in case of $(\mathrm{F} 204=5,6,9)$. When compound speed control, the actual value of input analog will be the product of set value for peripheral equipment and proportion parameters. e.g. when $\mathrm{k} 1=0.5, \mathrm{k} 2=2.0$, scope for analog which is input into inverter through AN1 channel is $0.0 \sim$ 5.0 V ; scope for analog which is input into inverter through AN2 channel is $0.0 \sim 20.0 \mathrm{~V}$.

F221	Count Frequency Divisions	Setting Range: $\quad 1 \sim 1000$	Mfr Value: 1
F222	Set Count Times	Setting Range: \quad F224~9999	Mfr Value: 1
F224	Designated Count Times	Setting Range: $\quad 1 \sim$ F222	Mfr Value: 1

- Count frequency divisions refer to the ratio of actual pulse input and inverter's count times, i.e.,

$$
\text { Inverter's Count Times }=\frac{\text { Actual Pulse Input }}{\text { Count Frequency Division }}
$$

e.g. when $\mathrm{F} 221=3$, inverter will count once for every 3 inputs of external impluse.

- Set count times refer to a count width pulse output by the output terminal (OUT terminal or relay) programmed with "reaching the set count times"function when a certain number of pulses are input from OP1. Count will restart after the count value reaches "fixed times".

As shown in Fig 5-6: if $\mathrm{F} 221=1, \mathrm{~F} 222=8, \mathrm{~F} 417=7$, OUT will output an instruction signal when OP1 inputs the $8^{\text {th }}$ pulse.

- Designated count times refer to an pulse output by the output terminal (OUT or RELAY terminal) programmed with "reaching the set count times"function when a certain number of pulses are input from OP1, until count value reaches the "set times".

As shown in Fig 5-6: if $\mathrm{F} 221=1, \mathrm{~F} 224=5, \mathrm{~F} 222=8$, $\mathrm{F} 416=8$, relay will output an instruction signal when OP1 inputs the $5^{\text {th }}$ pulse, relay will output an instruction signal until reaching "fixed count times 8 ".

F230 Frequency Setting Step length (Hz)	Setting Range: $0.01 \sim 1.00$	Mfr Value: 0.01

- This parameter means the changing frequency value when adjusting " $\boldsymbol{\Delta} / \boldsymbol{\nabla}$ " keys once or press "UP" and "DOWN" terminal once.

5.3 Multistage Speed Parameters

		Mfr Value: F300, F306, F312, F318, F324, F330, F336 Stage-Speed Running Direction	Setting Range: 0: Forward;
1: Reverse	F300 $=0 \quad$ F306 $=1$		
		F312 $=0 \quad$ F318 $=1$ F324 $=0 \quad F 330=0$ F336 $=0$	

- Running direction will be provided for each speed.
- When keypad control/485 communication control $(\mathrm{F} 200=0)$ or computer remote control $(\mathrm{F} 200=2)$,
stage-speed running direction will be set by the above function-code; when controlled by terminal (F200=1), stage-speed running direction will be controlled by the input terminal defined with "FWD", "REV" and "X" functions (See P_{29} Table 5-2).

F301, F307, F313, F319, F325, F331 and		
F337 Stage-Speed Acceleration time (S)	Setting Range: $0.1 \sim 3000$	Mfr Value: 20.0
F304, F310, F316, F322, F328, F334 and		
F340 Stage-Speed Deceleration time(S)		

- Acceleration time and deceleration time will be provided for each speed.

F302, F308, F314, F320, F326, F332 and
F338 Stage-Speed Running Frequency (Hz)

- Running frequency for each speed will be provided.
- In case of multistage speed control, speed control is allowed for running frequency of stage-speed by using
" \mathbf{A} / \mathbf{V} " keys or "UP" and "DOWN" terminals.

F303, F309, F315, F321, F327, F333 and F339 Stage-Speed Running Time(S)	Setting Range: $0.1 \sim 3000$	Mfr Value: 20.0

- Running time will be provided for each speed.。
- When auto circulating running ($\mathrm{F} 210=1$), stage-speed running time will be set by the above function-codes: In case of multistage running $(\mathrm{F} 210=0)$ or running at $8^{\text {th }}$ speed $(\mathrm{F} 210=2)$, it will be running at stage-speed and peripheral equipment control will be stopped. Therefore it is not restricted by stage-speed running time.

F305, F311, F317, F323, F329, F335, F341 Stage-Speed Stop/Waiting Time(S)

Setting Range: $0.0 \sim 3000$
Mfr Value: 0.0

- Stop/waiting time will be provided for each speed.
- When auto circulating running ($\mathrm{F} 210=1$), inverter will use stage-speed stop/waiting time; in case of multistage running $(\mathrm{F} 210=0)$ or running at $8^{\text {th }}$ speed $(\mathrm{F} 210=2)$, it will be running at stage-speed and peripheral equipment control will be stopped. It is therefore not restricted by stage-speed stop/waiting time.

| F342 | Selection of Compound Speed |
| :---: | :---: | :---: | :---: |
| Control for Stage-Speeds | Setting Range: 0: not allowed |
| $1:$ allowed | Mfr Value: 0 |

| F343Selection of Compound Speed
 Control Mode for Stage-Speeds | Setting Range:
 $0:$ multi-stage running frequency +
 values set for F344
 $1:$ Multi-stage running frequency +
 AN2 channel analog values | Mfr Value: 0 |
| :--- | :--- | :--- | :--- |

- Compound speed control for stage-speeds can be controlled together by multi-stage speed control, digital speed control and analog speed control. This speed control mode only works for multi-stage and 8 -stage running, not for automatic circulating running, i.e., such condition must be met as $\mathrm{F} 210=0$ or 2 when selecting compound speed control.
- F343 $=0$, select the control mode both by multistage speed control and digital speed control. The running frequency at each speed will then be the sum adding multistage speed frequency and set values of digital frequency. Set values of digital frequency will be set by F344.
e.g. the values set for current running frequency for each stage speed: $\mathrm{F} 302=5.00$, $\mathrm{F} 308=10.00$, $\mathrm{F} 314=$ $15.00, \mathrm{~F} 320=20.00, \mathrm{~F} 326=25.00, \mathrm{~F} 332=30.00, \mathrm{~F} 338=35.00$. To set $\mathrm{F} 344=10.00$, running frequency for each stage speed in case of compound speed control: $\mathrm{F} 302=15.00, \mathrm{~F} 308=20.00, \mathrm{~F} 314=25.00, \mathrm{~F} 320=$ $30.00, \mathrm{~F} 326=35.00, \mathrm{~F} 332=40.00, \mathrm{~F} 338=45.00$.
- $\mathrm{F} 343=1$, select the control mode both by multistage speed control and analog speed control. The running frequency at each speed will then be the sum adding multistage speed set frequency and AN2 channel analog values. Analog value set for AN2 is $0 \sim 10 \mathrm{~V}$ (to be provided by peripheral equipment through AN2 channel), corresponding frequency $0 \sim 10 \mathrm{~Hz}$.
e.g., the values set for running frequency at each speed: $\mathrm{F} 302=5.00, \mathrm{~F} 308=10.00, \mathrm{~F} 314=15.00, \mathrm{~F} 320=$ $20.00, \mathrm{~F} 326=25.00, \mathrm{~F} 332=30.00$ and $\mathrm{F} 338=35.00$. If the values set for "AN2" channel analog is 5.0 V , running frequency at each speed at time of compound speed control: $\mathrm{F} 302=10.00$, $\mathrm{F} 308=15.00$, $\mathrm{F} 314=$ $20.00, \mathrm{~F} 320=25.00, \mathrm{~F} 326=30.00, \mathrm{~F} 332=35.00, \mathrm{~F} 338=40.00$.

5.4 Programmable Input \& Output Terminal Parameters

5.4.1 Programmable Input Terminal

F408 \sim F415 \quad Terminal Function		Mfr Value: Definition
		F408 $=9 ; F 409=1 ; F 410=2 ;$ $F 411=3 ; F 412=7 ; F 413=13 ; ~$

- Terminal function OP1 \sim OP8 will be defined separately. 22 functions can be available for each terminal.

Table 5-3

F408~F415	Description	Remarks
0	No Function	
1	Multi-Speed Terminal1	Used in defining multi-speed function, refer to 6.2 Speed Control Mode (P47) for multi-speed control.
2	Multi-Speed Terminal 2	

F408 ~F415	Description	Remarks
11	Frequency Increasing by Degrees UP	This terminal is equal to the " $\mathbf{\Delta}$ " key on the operation panel.
12	Frequency Decreasing by Degrees DOWN	This terminal is equal to the " $\mathbf{\nabla}$ " key on the operation panel.
13	"FWD"Terminal	Control terminal for inverter terminal running. Refer to Table
14	"REV" Terminal	5-2 (P_{29}) for terminal control mode.
15	Three-line Type, Input Terminal of "X"	One terminal of the three-line control mode, used to stop inverter $\left(\mathrm{P}_{29}\right)$.
16	Switchover of Acceleration/Deceleration Time	Used in switchover of the first and the second acceleration deceleration times. When this terminal is working (i.e.it is connected with CM), the second acceleration/deceleration time is carried out. When this terminal is not working (i.e. it is disconnected with CM), then the first acceleration/deceleration time is used.
17	Peripheral Equipment Malfunction	The inverter will stop output immediately and display "ErP"if it receives the terminal input signal of "peripheral equipment malfunction" during operation. Resetting will not be done until the signal of "peripheral equipment malfunction" is released.
18	"Coding Speed Control" Input Terminal	When this function is selected, OP1 \sim OP8 will be binary digital input terminal. OP1 terminal corresponds to low bit of the binary digit while OP8 corresponds to high bit of the binary digit, and by analogy. Set to 1 when the terminals of the corresponding position is working; otherwise reset to 0 .
19	Close Loop Switched to Open Loop	Switch the speed control mode PI to that of F204: When the function terminal is open circuit with CM, it will be controlled by the close loop. When it is connected with CM, by open loop.
20	Compound Channel Speed Control Switched to Single Channel Speed Control	Realize the switchover between compound speed control and single-channel analog speed control (default: AN1 channel).
21	Terminal Counting	Input of count pulse of the built-in counter.
22	Count Value Reset to Zero	Reset the terminal count value to zero.
23	Pulse Frequency Input Terminal (Only valid for OP1)	When $\mathrm{F} 408=23$, set the speed with the external input pulse. Max frequency of the pulse input: 9999 Hz .

Warning!: 1. The count pulse frequency of the input terminal must not exceed 300 Hz . Otherwise the counter error will appear.
2.Terminal functions are not allowed for redefination except for coding speed control.

5.4.2 Programmable Output Terminal

F416	Relay Output	Setting Range: $0 \sim 13$	Mfr Value: 1
F417	OUT Terminal Output		Mfr Value:4

- Programmable output terminal includes collector open-circuit output terminal OUT and relay output terminals TA, TB and TC.
- The output terminal "action" in the following table refers to the relay sucking: TA closes TC, TB disconnects TC disconnection, OUT terminal is on status with low resistance.

Table 5-4
Programmable Output Terminal Function

F416, F417	Description	Remarks
0	No Function	
1	Inverter Malfunction Protection	This terminal will be "action" when inverter has malfunction protection except for undervoltage protection.
2	Over Latent Frequency	This terminal will be "action" when running frequency exceeds the set value of F119 (P_{23}). This terminal will restore when running frequency is lower than the value.
3	Free Stop	The terminal will be "action" when signal of "free stop" is input.
4	Inverter in Operation	The terminal will be "action" when inverter works. And it will restore when inverter stops.
5	During DC Braking	The terminal will be "action" when inverter is under DC braking.
6	Indicating Switchover Acceleration / Deceleration 	This terminal will be "action" when it carries out the instruction of "switchover of acceleration/deceleration".
7	Reaching the Set Count Value	This terminal will be "action" when inverter carries the external count instruction and count value reaches the set value of F222 $\left(\mathrm{P}_{30}\right)$.
8	Reaching the Designated Count Value	This terminal will be "action"when inverter carries the external count instruction and count value reaches the set value of $\mathrm{F} 224\left(\mathrm{P}_{30}\right)$.
9	Overload Early Warning Signal	This terminal will be "action" and send a signal of overload protection early warning when the current reaches a certain value.
$10 \sim 13$	Reserved	

5.4.3 Analog signal Output Terminal

		Setting Range:	
F418	FM Output Function Selection	$0:$ indicate output frequency value	Mfr Value:0
		$1:$ indicate output current value	

- When selecting "indicate output frequency", $0 \sim 10 \mathrm{~V}$ output corresponds to $0 \sim$ F111 (max frequency).
-When selecting "indicate input frequency", $0 \sim 10 \mathrm{~V}$ output corresponds to $0 \sim \mathrm{I}_{\mathrm{e}}$ (inverter's rated current).

F419	FM Output Calibration (\%)	Setting Range: $0 \sim 200$	Mfr Value: 100

- This function is used to calibrate the output error of FM. Calibration value will be subject to the actual measuring.

	Setting Range:	
F420 \quad IM(FM)Output Range Selection	Mfr Value: 0	
	$0: 0 \sim 20 \mathrm{~mA}(0 \sim 10 \mathrm{~V})$	

- Proper selection of current output range (voltage) will be subject to different types of meters.

5.5 V/F Control Parameters

5.5.1 V/F Compensation \& Carrier Wave Frequency

| F500 \quad Slip Compensation | Setting Range: $0.00 \sim 0.08$ | Mfr Value: 0.03 |
| :--- | :--- | :--- | :--- |

- Slip will gain in case of higher overload. Adjusting the parameter of F500 will make motor's actual rotate-speed close to the rated rotate-speed.

F501	V/F Curve Control Mode	Setting Range: $0:$ beeline 1:polygonal line 2:square	Mfr Value: 0
F502	Torque Promotion $(\%)$	Setting Range:1~MIN (15, F506)	Mfr Value: 5

- This product has 3 control modes for "V/F" curve, to promote output torque at low frequency.
- Torque promotion can be set through F502 for selection of polygonal-line type V/F curve. Higher value setting will incur bigger compensation (as shown in Fig 5-7), and more starting current. Over-setting values may result in inverter's over-current protection.

Fig 5-7 Torque Promotion

- Square V/F curve will meet requirements where blower and pumps are used.
- User may select polygonal-line type V/F curve for flexible setting if he has any special requirements for

V/F curve.

- MIN(15, F506) refers to the smaller one of the two set values between 15 and F506.

F505	User-Defined Frequency Point 1 (Hz)	Setting Range: F112~F507	Mfr Value: 10.00
F506	User-Defined Voltage Point 1 (\%)	Setting Range: F502 ~ MIN(100, F508)	Mfr Value: 30
F507	User-Defined Frequency Point $2(\mathrm{~Hz})$	Setting Range: F505~F118	Mfr Value: 20.00
F508	User-Defined Voltage Point 2 (\%)	Setting Range: F506 ~ MIN(100, F509)	Mfr Value: 40
F509	Voltage Corresponding Turnover Frequency (\%)	Setting Range: F508~100	Mfr Value: 100

- User may define on its own polygonal-line type V/F curve as per its requirements and actual load, as shown in Fig 5-8.
- $\operatorname{MIN}(100$, F508) shows the smaller of the two set values between 100 and F508.

V509
Fig5-8 Polygonal-Line Type V/F Curve
Setting Range: 0 : no adjusting
1 : adjusting
Mfr Value: 0 \qquad

- In case of fluctuation with input voltage, this function may automatically adjust ratio of PWM output to keep output voltage stable.

F512 Carrier-Wave Frequency Setting (kHz)
Setting Range: $1 \sim$ values set as
Mfr Value: subject to per inverter model inverter model

- Carrier-wave frequency is modulating-frequency when inverter outputs PWM wave.
- Promoting carrier-wave may improve output current-waveform, reduce motor noise, but the temperature of inverter will rise.

F513	Random Carrier-Wave Selection	Setting Range: 0: not allowed 1: allowed	Mfr Value: 1

- $\mathrm{F} 513=0$: inverter will modulate as per the carrier-wave set by F512;
- F513 = 1: inverter will operate in mode of random carrier-wave modulating, which will reduce noise effectively.

5.5.2 Braking Parameters

		Setting Range: 0: not allowed F514	DC Braking Function Selection
		2:braking during stop 3:braking during start+stop	Mfr Value:0
F515 \quad Initial Frequency of DC Braking (Hz)	Setting Range: $0.00 \sim 5.00$	Mfr Value: 5.00	
F516 \quad DC Braking Current (\%)	Setting Range: $0 \sim 150$	Mfr Value: 100	
F517 Braking Lasting Time During Starting (S)	Setting Range: $0.0 \sim 10.0$	Mfr Value: 5.0	
F518 Braking Lasting Time During Stopping (S)	Setting Range: $0.0 \sim 10.0$	Mfr Value: 5.0	

- In case of negative torque, using "pre-starting braking" may ensure that motor stays in quiescence before starting.
- Parameters related to "DC Braking": F515, F516, F517 and F518, with following interpretations:
a. F515: Initial-frequency of DC-braking. DC braking will start when inverter's output frequency is lower than this value.
b. F516: DC braking current. The ratio of current and rated current in case of

Fig 5-9 DC Braking braking. The higher this value is, the higher braking torque is.
c. F517: Braking lasting time when starting. The lasting time of DC braking before inverter starts.
d. F518: Braking lasting time when stopping. The lasting time of DC braking in course of inverter's stopping.

- DC braking, as shown in Fig 5-9.

F519	Energy Consumption Brake Ratio (\%)	Setting Range: $0 \sim 100$	Mfr Value: 50

- It means the ratio when power resistor is used in energy consumption braking. Higher value will lead to quicker energy consumption with motor feedback, which can effectively shorten inverter's deceleration time.

5.5.3 Stalling Adjusting

F525	Stalling Adjusting Function Selection	Setting Range: 0:not allowed 1: allowed	Mfr Value: 0
F526	Stalling Current Adjusting (\%)	Setting Range: $120 \sim 200$	Mfr Value: 160

F527	Stalling Voltage Adjusting (\%)	Setting Range: $120 \sim 200$	Mfr Value: 140

- Inverter automatically stops acceleration/deceleration at stalling, and will go on with acceleration / deceleration after output current or bus voltage drops. Stalling adjustment can avoid trip as inverter is accelerating / decelerating.
- Set stalling voltage properly for inverters without energy consumption resistor or braking unit to avoid over-voltage trip.

5.6 PI Adjusting Parameters

F600 PI Adjusting Function Selection	Setting Range: 0:not allowed $1:$ allowed	Mfr Value: 0
F601 PI Adjusting Channel Setting Selection	Setting Range: 0: Digital Setting $1:$ AN1 Channel Setting	Mfr Value: 0
F602 PI Adjusting Digit Setting (V)	Setting Range: $0.00 \sim 10.00$	
	2: AN2 Channel Setting	
F603 PI Adjusting Feedback Channel	Setting Range: 0:AN1 channel feedback Selection	Mfr Value: 5.00

- Digit given is a target value $(0 \sim 10 \mathrm{~V})$ for PI adjusting set by function code F602.
- Analog given (or feedback) will be achieved through analog channel AN1 and AN2 together with jumper teminal, including voltage analog and current analog. Refer to Use of Jumper Terminals $\left(\mathrm{P}_{27}\right)$ for detailed operation;
- Pulse channel feedback means taking the pulse frequency input by terminal OP1 as feedback
$\left(\mathrm{F} 408=23-\mathrm{P}_{34}\right)$.

F604	Min Analog Set by PI (V)	Setting Range: $0.00 \sim$ F606	Mfr Value: 0.00
F605	Corresponding Feedback for Min Analog Set by PI (V)	Setting Range: $0.00 \sim 10.00$	Mfr Value: 0.00
F606	Max Analog Set by PI (V)	Setting Range: F604~10.00	Mfr Value: 10.00
F607	Corresponding Feedback for Max Analog Set by PI (V)	Setting Range: $0.00 \sim 10.00$	Mfr Value: 10.00

- Set F604~F607 as per the setting value scope and feedback scope of the close-loop adjusting system, as well as interrelation between setting value and feedback value. Normally setting is done as per the corresponding relation between setting and feedback meter.
- If thermo-regulation is made, regulation range is $20 \sim 100^{\circ} \mathrm{C}$ and setting range of the corresponding control
system is $2 \sim 8 \mathrm{~V}$, and when temperature fluctuates within $20 \sim 100^{\circ} \mathrm{C}$ and output range of temperature measurement meter is $3 \sim 9 \mathrm{~V}$, then $\mathrm{F} 604 \sim \mathrm{~F} 607$ is set as follows:

F604=2.00, F606=8.00; F605=3.00, F607=9.00.

F608	Proportion Gain	Setting Range: $1 \sim 1000$	Mfr Value: 100
F609	Integration Time (S)	Setting Range: $0.1 \sim 10.0$	Mfr Value: 0.1
F610	Sampling Cycle (S)	Setting Range: $0.1 \sim 10.0$	Mfr Value: 0.1

- Proportion Gain (P) and Integration Time (Ti) as shown in Fig 5-10. Sampling Cycle refers to that of feedback quantity x . Ti as shown here refers to Integration Time. The

Fig 5-10 PI Adjusting bigger Ti is, the slower the system responds; the smaller Ti is, the faster the system responds, but it is to surge. Contrariwise with Proportion Gain (P).

F611	PI Adjusting Accuracy $(\%)$	Setting Range: $0 \sim 20$	Mfr Value: 5

- It refers to the percentage of the ${ }_{\text {Setting Value }}$ deviation (between feedback of PI regulation and setting value) against close-loop given value. Deviation range allowed by PI

Fig 5-11 Deviation Range Allowed regulation is shown in Fig 5-11.

F612 \quad PI Regulating Polarity	Setting Range:		
		$0:$ negative feedback adjusting	Mfr Value: 0
	1 : positive feedback adjusting		

- Negative feedback adjusting means that when regulation deviation is positive, PI adjusting will bring output frequency down.
- Positive feedback adjusting means that when regulation deviation is positive, PI adjusting will bring
output frequency up.

5.7 Timing Control \& Definable Protection Parameters

5.7.1 Timing Control

| F700 | Mode Selection for Free-Stop | Setting Range: 0:Stop immediately
 $1:$ Stop Delay |
| :---: | :---: | :---: | | Mfr Value: 0 |
| :---: |

-"Immediate Stop" means that inverter will stop output immediately when detecting "free stop" signal, and load will stop by inertia.
. "Delayed Stop" means that inverter will execute "free stop" command after waiting some time upon receiving "stop" instead of stopping immediately. Delay time is set by F701.

	Setting Range:		
F702 Fan Control Selection (valid	$0: \quad$ temperature controlled fan		
only for $18.5 \sim 110 \mathrm{KW}$ inverter)	running		
$1:$ not temperature controlled fan			
running	Mfr Value: 0		

- As $\mathrm{F} 702=0$, fan is controlled by radiator's temperature during running. It will start to work when temperature reaches a certain value;
- As $\mathrm{F} 702=1$, fan is controlled by radiator's temperature during running, i.e., fan will start to work when inverter is power connected.

F705	Allowed Auto-restart Times	Setting Range: $0 \sim 5$	Mfr Value: 3
F706	Interval Time of Auto-restart(S)	Setting Range: $0.0 \sim 10.0$	Mfr Value:3.0

- When auto start is working, i.e., $\mathrm{F} 139=1\left(\mathrm{P}_{25}\right)$, set the times allowed for auto restart and interval time of start after inverter is power-reconnected or malfunction protection.

5.7.2 Settable Protection - Under-Voltage Protection and Overloading Protection

F709	Under-Voltage Protection Value (V)	Setting Range: $200 \sim 420$	Mfr Value: subject to inverter's model

- As bus-voltage is lower than this set value, inverter will start undervoltage protection.

F715	Overloading Adjusting Gains	Setting Range: $0 \sim 1000$	Mfr Value: Adjusting value
F716	Inverter Overloading Coefficient (\%)	Setting Range: $150 \sim 180$	Mfr Value: Adjusting value

F717	Motor Overloading Coefficient (\%)	Setting Range: 20~120	Mfr Value: Adjusting value

- As output current is accumulated to overloading protection value, inverter will start "overloading protection".
- Overloading Adjusting Gains (F715): the time constant of the response speed of overload protection, which is used to regulate the speed of frequency decreasing. The bigger gains are, the slower frequency decrease.
- Inverter Overloading Coefficient (F716): the ratio of overload-protection current and rated current when overload protect occurs. Its value shall be subject to actual load.
- Motor Overloading Coefficient (F717): Set as follows in order to protect motor when inverter is running with lower-power motor:
F717: Motor Overloading Coefficient $=\frac{\text { Actual Motor Power }}{\text { Proper Motor Power for Inverter }} \times 100 \%$

5.7.3 Trouble Recording

F720 Third Malfunction Type By Counting Down	0: No Trouble 1: Acceleration Over-Current 2: Deceleration Over-Current 3: Constant-Speed Over-Current 4: Acceleration Over-Voltage
F721 Second Malfunction Type By Counting Down	5: Deceleration Over-Voltage 6: Constant-Speed Over-Voltage 7: Undervoltage 9: Inverter Overload 10: Motor Overload 11: Excess Temperature
F722 The Latest Malfunction Type	12: User's Password Error / Serious Exterior Interference 13: Out-Phase 15: Emergency Stop 19: Galvanoscopy Error 21: Peripheral Equipment Malfunction
F723 The Latest Malfunction Frequency (Hz)	
F724 The Latest MalfunctionCurrent (A)	
F725 The Latest MalfunctionVoltage (V)	

\cdot F720 ~ 725 is used to record the latest three malfunction types and the corresponding frequency, current and voltage at last malfunction.

Refer to Appendix 1(P_{55}) for causes and countermeasures for any malfunction.

5.8 Analog signal Parameters

5.8.1 Analog signal Input

In mode of analog speed control, it is necessary to set the min and max input analog, and the corresponding output frequency to secure a good speed control effect.

F800	Min Analog Input (V)	Setting Range: $0.00 \sim$ MIN(F801,10.00)	Mfr Value: 0.00
F801	Max Analog Input (V)	Setting Range: MAX $(0.00, F 800) \sim$ 10.00	Mfr Value: 10.00
F807	Corresponding Frequency for Min Analog (Hz)	Setting Range: F112~F111	Mfr Value: 0.00
F808	Corresponding Frequency for Max Analog (Hz)	Setting Range: F112~F111	Mfr Value: 50.00

- Set min and max analogs as per actual input range of analog signal.
- The setting values of F807 and F808 decide proportion mode of analog adjustment change, as shown in Fig 5-12:
- MIN (F801, 10.00) refers to the smaller one of the two values between F801 setting value and 10.00.
- MAX $(0.00, \mathrm{~F} 800)$ refers to the bigger one of the two values between F800 setting value and 0.00 .

Fig 5-12 Proportion Mode of Analog Adjusting

5.8.2 Pulse Frequency Input

F809 Max Input Pulse Frequency (Hz)	Setting Range:0~9999	Mfr Value: 5000

F810	Corresponding Frequency for Max Input Pulse Frequency (Hz)	Setting Range: $0.00 \sim$ F111	Mfr Value: 50.00

- As $\mathrm{F} 204=7\left(\mathrm{P}_{26}\right)$ and $\mathrm{F} 408=23\left(\mathrm{P}_{34}\right)$, inverter's running frequency can be controlled through pulse frequency input by OP1 terminal.
- F809 provides the max pulse frequency allowed for inverter's input. Inverter will not proceed in case of exceeding this frequency.

F811	Filtering Time Constant (S)	Setting Range: $1.0 \sim 10.0$	Mfr Value: 3.0

- Filter the input analog signal. The bigger the value is, the steadier the analog set frequency is, but will have a slow response.

5.9 Communication Parameters

F900	485 Communication Interface Function Selection	Setting Range: 0: computer $1: 485$ Communication Control Enclosure	Mfr Value: 1

- This function is used for selecting inverter's communication type:

0: Computer will communicate and control inverter through 485 interface.
1: "Communication Control Enclosure 485" works and controls inverter through 485. It will take 9600 bit $(F 903=3)$ as default communication Baud rate in this control mode, which can not be changed.

| F901 Communication Address | Setting Range: $1 \sim 127$: inverter address | Mfr Value: 1 |
| :--- | :--- | :--- | :--- |

- Set the communication address for inverter. Each address in the same connection net shall be exclusive and unrepeatable.

| F902 Odd/Even Calibration | Setting Range: 0: no calibration
 1:odd calibration
 $2:$ even calibration | Mfr Value: 0 |
| :--- | :--- | :--- | :--- |

- Select calibration type for RS-485 communication.
- As $\mathrm{F} 900=1$, this function does not work.

	Setting Range:	$1: 2400$
F903 Communication Baud Rate (bit)	$2: 4800$	
	$3: 9600$	
	$4: 19200$	Mfr Value: 3

- Selecting data transmission ratio between inverter and computer remote control.
- As F900 = 1, "Communication Control Enclosure 485 " will take 9600 bit as default communication Baud rate, which can not be changed.

Fig 6-1 Operation Mode Block Diagram

6.2 Speed Control

F1500-G series inverter has multiple ways of speed control like "keypad and terminal digital speed control", "multi-speed control (including multi-speed running, automatic circulating running, 8 -stage speed running, compound speed control", "analog signal single channel speed control", "analog signal compound speed control", "coding speed control", "jogging speed control" and "computer speed control" and so on. All these must correspond with parameter settings, to be detailed as follows:

1) Keypad, Terminal Digital Speed Control: F204=0 or 1

Under this setting, inverter adopts the way of keypad, terminal digital speed control, and speed can be adjusted with " $\mathbf{\Delta} / \mathbf{\nabla}$ " keys on the keypad or "UP" and "DOWN" terminals to achieve dynamical speed control. Among which the function of "UP" and "DOWN" terminals speed control is defined by F408~F415 and "UP" terminal equals to " $\mathbf{\Delta}$ " key on the keypad and "DOWN" terminal equals to " $\boldsymbol{\nabla}$ " key on the keypad.
e.g. as $\mathrm{F} 409=11$, OP2 is defined as "UP" terminal that is connected with CM and frequency rises; as F410 $=12$, OP3 is defined as "DOWN" terminal, that is connected with CM and frequency drops.

As F204 $=0$, no adjusting result is saved after inverter is suddenly turned off;
As F204 = 1, adjusting result is saved after inverter is suddenly turned off;
Manufacturer's default speed-control mode is F204 $=0$.
Operation control is selected by F200: F200 $=0$ keypad control/485 communication control, F200 $=1$ terminal control, $\mathrm{F} 200=2$ computer control $\left(\mathrm{P}_{25}\right)$.

Operation direction of keypad control is selected by F207: F207 $=0$ forward, $\mathrm{F} 207=1$ reverse $\left(\mathrm{P}_{28}\right)$.
Terminal control way is selected by F208: F208 $=0$,two-line type 1; F208 $=1$, two-line type 2; F208=2, three-line type $1 ; F 208=3$, three-line type 2, F208 $=4$ start/stop controlled by direction pulse $\left(\mathrm{P}_{28}\right)$.

Frequency adjusting step length is set by F230 with setting scope of $0.01 \sim 1.00 \mathrm{~Hz}\left(\mathrm{P}_{31}\right)$
Stopping mode is selected by F121: $\mathrm{F} 121=0$ stop by deceleration time, $\mathrm{F} 121=1$ free stop. Free stop is selected by F 700 : $\mathrm{F} 700=0$ stop at once, $\mathrm{F} 700=1$ delayed stop. F 701 (P39) sets delayed stop time.

2) Multi-Speed Control: F204 = 2

Multi-speed control is further divided into 4 modes: multi-speed running, automatic circulating running, 8 -stage speed running and compound stage speed running, which is selected by F210: F210 $=0$ multi-speed
running, $\mathrm{F} 210=1$ automatic speed running, $\mathrm{F} 210=28$-stage speed running $\left(\mathrm{P}_{29}\right)$.
Stage-speed changing control is done by F209: F209 = 0 allows no adjustment to segment speeds, F209=1 allows adjustment to segment speeds (P29).

Multi-segment-speed's related parameters are set by F300~F344(P31).
Operation control is selected by F200: F200 $=0$ keypad control $/ 485$ communication control, F200 $=1$ terminal control, F200 $=2$ computer control (P25).

Terminal control mode is selected by F208: F208 $=0$,two-line type 1; F208 $=1$, two-line type 2; F208 $=2$, three-line type $1 ; \mathrm{F} 208=3$, three-line type $2, \mathrm{~F} 208=4$ start/stop controlled by direction pulse $\left(\mathrm{P}_{28}\right)$.

Adjustment step length of frequency is set by F230. Setting range is $0.01 \sim 1.00 \mathrm{~Hz}\left(\mathrm{P}_{31}\right)$.
Stop mode is selected by F121: F121 $=0$ stop by deceleration time, F121 $=1$ free stop. Free stop is selected by F700: $\mathrm{F} 700=0$ stop at once, $\mathrm{F} 700=1$ delayed stop. F701 (P39) sets time of delay stop.

a. Multi-Speed Running: $\mathbf{F 2 0 4}=2$, F210=0

"Multi-speed" involves 7 speeds (their frequency values, acceleration and deceleration time and so on can be revised via parameters) set in the inverter and is operated by defined "multi-speed terminal 1 ", "multi-speed terminal 2 " and "multi-speed terminal 3 ". The status combination that they are connected or disconnected with "CM" can call separately any speed of the "multi-speed".
e.g., $\mathrm{F} 408=1, \mathrm{~F} 409=2, \mathrm{~F} 410=3$, then $\mathrm{OP} 1, \mathrm{OP} 2, \mathrm{OP} 3$ are separately defined as "multi-speed terminal 1 ", "multi-speed terminal 2" and "multi-speed terminal 3". See Table 6-1 for how to make compound calls:

Table 6-1 Multi-Speed Calling \& Corresponding Parameters Setting

Multi-speed terminal 3		0	0	0	0	1	1	1	1
Multi-speed terminal 2		0	0	1	1	0	0	1	1
Multi-speed terminal 1		0	1	0	1	0	1	0	1
Stage speed Calling		Stop	1st Sneed	2nd Sneed	3rd Sneed	4th Sneed	5th Sneed	6th Sneed	7th Sneed
Acceleration time			F301	F307	F313	F319	F325	F331	F337
Deceleration time			F304	F310	F316	F322	F328	F334	F340
Frequency Set			F302	F308	F314	F320	F326	F332	F338
Operation direction	keypad control $(\mathrm{F} 200=0)$		F300	F306	F312	F318	F324	F330	F336
	$\begin{aligned} & \text { terminal control } \\ & (F 200=1) \\ & \hline \end{aligned}$	Realized by the control mode of terminals FWD, REV, and X (F208)							

Note: " 1 " in the table means the terminal of input signal is connected with CM; "0" means the terminal of
input signal is disconnected with CM.

b. Automatic circulating operation: F204=2, F210=1

"Automatic circulating operation" means "multi-segment-speed" automatic circulating operation, i.e., inverter shall automatically operate as per acceleration/deceleration time, operation time, operation frequency and operation direction set in "each stage speed" as required by users after "operation" command is given; when operation reaches the set time value, inverter shall automatically switch among stage speeds. During the operation, inverter shall continuously operate according to the set parameters if no command of "stop" is given or it doesn't reach the set value by F212 (operation times of auto circulation).
"Auto circulating operation" can be called by "run" key or the defined "operation" terminal and can be automatically removed by the setting of F212 or by "stop" key on the keypad or the defined "stop" terminal.
"Auto circulating operation" can realize auto circulating operation of $2 \mathrm{nd} \sim 7$ th speeds (set by F211). Once the times of circulation is reached (set by F212), inverter shall stop automatically or remain in stable operation at the final stage speed frequency (set by F213).
e.g.: $\mathrm{F} 211=7$, select auto circulating operation of "7-stage \quad speed". F212 = 1000, automatic circulating operation for 1000 times. F213 $=0$, it automatically stops after circulating operation end.

As the F1500-G inverter is carrying the function of "auto-circulating operation", it shall directly switch from
 current speed to the next

[^0]speed (as shown in Fig 6-2) without stopping and waiting if stopping and waiting time equals to zero, i.e., the setting of F305, F311, F317, F323, F329, F355 and F341 is 0.0 .

If " Stop/wait time" is more than 0, i.e., the values of F305, F311, F317, F323, F329, F355 and F341 are set

Fig 6-3 Auto-Circulating Operation (stop/wait time >0)
more than 0.0 , inverter shall first stop waiting and then switch to the next speed (as shown in Figure 6-3)

If the operation direction among stage speeds is different, like $\mathrm{F} 300=0, \mathrm{~F} 306=1, \mathrm{~F} 312=0$, then the switch process of speeds shall be stop first before switch to the next speed and the switch process shall carry out the death area time of forward and reverse switch (F120-P23), as shown in Fig 6-4.

Fig 6-4 Auto-Circulating Operation (different operation direction between segment speeds)
c. $8^{\text {th }}$ Speed Operation: $\mathbf{F 2 0 4}=2, F 210=2$

The 8 -stage speed operation consists of 7 speed frequencies and the target frequency F113, which are also operated by the defined "multi-speed terminal 1", "multi-speed terminal 2"and"multi-speed terminal 3". The
status combination that the 3 terminals are connected or disconnected with "CM" can call separately any of the 8 speeds.
e.g.: $\mathrm{F} 408=1, \mathrm{~F} 409=2$ and $\mathrm{F} 410=3$, the terminals of $\mathrm{OP} 1, \mathrm{OP} 2$ and OP3 are separately defined as "multi-speed terminal 1" "multi- speed termina12"and"multi- speed terminal 3".

See Table 6-2 for how to make compound call:
Table 6-2 8-Speed Calling \& Its Corresponding Parameter Setting

Multi-speed terminal 3		0	0	0	0	1	1	1	1
Multi-speed terminal 2		0	0	1	1	0	0	1	1
Multi-speed terminal 1		0	1	0	1	0	1	0	1
Stage-Speed Calling		$\begin{gathered} 1^{\text {st }} \\ \text { Speed } \\ \hline \end{gathered}$	$\begin{gathered} 2^{\text {nd }} \\ \text { Speed } \\ \hline \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { Speed } \\ \hline \end{gathered}$	$\begin{gathered} 4^{\text {th }} \\ \text { Speed } \\ \hline \end{gathered}$	$\begin{gathered} 5^{\mathrm{lnh}} \\ \text { Speed } \end{gathered}$	$\begin{gathered} 6^{\mathrm{th}} \\ \text { Speed } \end{gathered}$	Speed	Sneed
Acce	eration time	F114	F301	F307	F313	F319	F325	F331	F337
Deceleration time		F115	F304	F310	F316	F322	F328	F334	F340
Frequency Set		F113	F302	F308	F314	F320	F326	F332	F338
Operation direction	keypad control $(\mathrm{F} 200=0)$	F207	F300	F306	F312	F318	F324	F330	F336
Operation direction	terminal control $(\mathrm{F} 200=1)$	Realized by the control mode of terminals FWD, REV, and X (F208)							

Note: " 1 " in the table means input signal terminal is connected of with CM ; whereas " 0 " means disconnection of input signal terminal from CM.

d. Compound on speed control: $\mathrm{F} 204=2, \mathrm{~F} 210=0$ or $2, \mathrm{~F} 342=1$

Compound speed control means the speed control mode controlled jointly by multi-speed control, digital speed control and analog speed control. This speed control mode is only effective to multi-speed and 8 -stage speed running but is not valid to auto circulating operation.

When jointly controlled by multi-speed control and digital speed control ($\mathrm{F} 343=0-\mathrm{P} 32$), the running frequency of each speed will be the total of multi-speed setting frequency and the setting value of digital frequency. The setting value of digital frequency is set by F344 with a range of $0.00 \sim 20.00 \mathrm{~Hz}$.

When jointly controlled by multi-speed control and analog speed control($\mathrm{F} 343=1-\mathrm{P} 32$), the operation frequency of each speed is the total values set by multi-speed frequency and AN2 channel analog signal whose value is set at the range of $0 \sim 10 \mathrm{~V}$ (provided through AN2 channel by peripheral equipment) corresponding with a range of $0 \sim 12 \mathrm{~Hz}$.

Stage-speed changing control is selected by F209: F209 $=0$ not allowed to changing to stage speed; F209 $=1$
allowed to changing to stage speed (P29).
The related parameter of multi-speed is set by F300~F344 (P31) .
Operation control is selected by F200: F200 $=0$ keypad control $/ 485$ communication control; $\mathrm{F} 200=1$ terminal control; $\mathrm{F} 200=2$ computer remote control(P25).

Operation direction of keypad control is selected by F207: F207 $=0$ forward, $\mathrm{F} 207=1$ reverse $(\mathrm{P} 28)$.
Terminal control mode is selected by F208: F208 $=0$,two-line type 1; F208 $=1$, two-line type 2; F208 $=2$, three-line type $1 ; \mathrm{F} 208=3$, three-line type $2, \mathrm{~F} 208=4$ start/stop controlled by direction pulse $\left(\mathrm{P}_{28}\right)$.

The adjustment step length of frequency is set by F230 with the range of $0.01 \sim 1.00 \mathrm{~Hz}(\mathrm{P} 31)$.
Stop mode is selected by F121: F121=0 stop by deceleration time, F121=1 free stop, which is chosen by F700: $\mathrm{F} 700=0$ stop immediately, $\mathrm{F} 700=1$ delayed stop. F 701 (P39) sets delay stop.
3) Single channel analog signal speed control: F204=3, 4 or 10 Note3

Analog speed control means to adjust inverter's output frequency by the analog signal of voltage (or current), during which, voltage analog signal can be defined by the external potentiometer or that of the keypad control unit, or it can also be defined by output analog signal of other facilities. Current analog signal can be defined by corresponding sensors or by output of other control facilities.

As F204=3, The speed control signal of analog signal shall be input by terminal "AN1"; as F204=4, speed control signal of analog signal shall be input by terminal "AN2"; F204 $=10$ is used to select the control speed of the analog signal of keypad potentiometer (Vk) Note 3. (Note 3: No "J2" jumper terminals with both single-phase inverters without built-in braking unit and 3 phase $11 \sim 110 \mathrm{KW}$ inversion. Analog signal of keypad potentiometer (Vk) is set by function code of F204.)

Different ways of speed control can be reached by using jumper terminals and function parameter settings together (see details on P27 for Application of Jumper Terminals.)

Related parameters of analog signal are set by F800~F811(P44).
Operation control is selected by F200: F200 $=0$ keypad control $/ 485$ communication control, F200 $=1$ terminal control, $\mathrm{F} 200=2$ computer remote control $(\mathrm{P} 25)$.

Operation direction of keypad control is selected by F207: F207 $=0$ forward, $\mathrm{F} 207=1$ reverse (P28) .
Terminal control mode is selected by F208: F208 $=0$,two-line type 1; F208 $=1$, two-line type 2; F208=2, three-line type $1 ; \mathrm{F} 208=3$, three-line type $2, \mathrm{~F} 208=4$ start/stop controlled by direction pulse $\left(\mathrm{P}_{28}\right)$.

Stop mode is selected by F121: F121 $=0$ stop by deceleration time, $\mathrm{F} 121=1$ free stop. Of which free stop
mode is selected by F700: $\mathrm{F} 700=0$ immediate stop, $\mathrm{F} 700=1$ delayed stop. Time of delayed stop is set by F701(P39).

4) Compound Speed Control of Analog signal: F204=5, 6 or 9

For compound speed setting, analog signal is input through terminals of "AN1" and "AN2". For F204=5, the result of compound speed control is $\mathrm{k} 1 * \mathrm{AN} 1+\mathrm{k} 2 * \mathrm{AN} 2$; as $\mathrm{F} 204=6$, the result of compound speed control is $\mathrm{k} 1 * \mathrm{AN} 1-\mathrm{k} 2 * \mathrm{AN} 2$; as $\mathrm{F} 204=9$, the result of compound speed control is $\mathrm{k} 1 * \mathrm{AN} 1+\mathrm{k} 2 *(\mathrm{AN} 2-5 \mathrm{~V})$. The "AN1" and "AN2" in the formula mean the analog signal input through channels AN1 and AN2.

For compound speed control, there is a function with the programmable input terminal (OP1 $\sim \mathrm{OP} 8$), which may be used to switch the controls of dual-way analog signal and single-way analog signal. For single-way analog signal control, AN1 channel control is considered valid by default. For instance F409=20: when OP2 is disconnected from CM , it is dual-way analog signal control; when OP 2 is connected with CM , AN1channel control works, equal to $\mathrm{F} 204=3$.

Different speed control mode may be realized by using jumper terminals and function parameter settings together (refer to Application of Jumper Terminal on P27 for details)

Ratio coefficients k 1 and k 2 are set by F214 and F215 functional code (P30).
Related parameters of analog signal is set by $\mathrm{F} 800 \sim \mathrm{~F} 811$ (P44).
Operation control is selected by F200: F200 $=0$ keypad control/485communication control, F200 $=1$ terminal control, $\mathrm{F} 200=2$ computer remote control (P 25).

Operation direction of keypad control is selected by F207: $\mathrm{F} 207=0$ forward, $\mathrm{F} 207=1$ reverse (P28) .
Terminal control mode is selected by F208: F208 $=0$,two-line type 1; F208 $=1$, two-line type 2; F208=2, three-line type 1; F208=3, three-line type 2, F208 = 4 start/stop controlled by direction pulse $\left(\mathrm{P}_{28}\right)$.

Stop mode is selected by F121: F121 $=0$ stop as deceleration time, F121 $=1$ free stop. Of which, free stop mode is selected by F700: $\mathrm{F} 700=0$ immediate stop, $\mathrm{F} 700=1$ delayed stop. F 701 (P39) sets time of delayed stop.

5) Coding Speed Control: $\mathbf{F 2 0 4 = 8}$

Set the input terminal ($\mathrm{OP} 1 \sim \mathrm{OP} 8$) as the coding speed control function. The different switch status combinations for terminal mean the 8 -binary data. OP8 is the highest bit. and OP1 is the lowest bit. It is further stipulated that connection between terminal and "CM" is binary 1 and disconnecting with " CM " is binary ' 0 '.

Through inverter, the 8 -binary data input by $\mathrm{OP} 1 \sim \mathrm{OP} 8$ shall be changed to decimal system value, the ratio with value 255 will then multiply with inverter's max frequency and get the actual output frequency of coding speed control.
e.g.: if max frequency $\mathrm{F} 111=50.00 \mathrm{~Hz}, \mathrm{~F} 415=18$ and OP8 terminal connects with CM terminal, then input binary data 10000000 , which is 128 in decimal. The operation frequency will therefore be $(128 / 255) \times 50=$ 25.10 Hz .
6) Jogging Speed Control: F200 $=1$

In mode of terminal control $(\mathrm{F} 200=1)$, when function of certain programmable input terminal $(\mathrm{OP} 1 \sim \mathrm{OP} 8)$ is defined as jogging function, jogging speed control can be reached by short connection of the terminal with CM.

The jogging frequency is set by F124 with range: F112 (min frequency) \sim F111 (max frequency).
The jogging acceleration /deceleration time is set by F125 and F126, with range of $0.1 \sim 3000$ S.
The direction of jogging operation is included in the definition for terminal function: 9 is forward running and 10 is reverse running.

Stop mode is selected by F121: F121 $=0$ stop as deceleration time, F121 $=1$ free stop. Of which, free stop is selected by F700: F700 $=0$ instant stop, $\mathrm{F} 700=1$ delayed stop. $\mathrm{F} 701(\mathrm{P} 42)$ sets delayed stop time.
7) Computerized Speed Control: $F 900=0$

Computerized speed control means that computer will communicate via 485 to control the operation of inverter.

The communication address is selected by F901 with setting range of $1 \sim 127$. It should be noted that computer's "broadcasting address" is 255 . When implementing the broadcasting command, computer may control all inverters in the network with no need for inverters to set broadcasting address.

Communication checking type is selected by F902: F902 $=0$ non- checking, F902 $=1$ odd checking, F902 $=2$ even checking.

Communication Baud rate is set by F903: 2400bit for $\mathrm{F} 903=1,4800$ bit for F 903 = 2, 9600 bit for $\mathrm{F} 903=3$, and 19200 bit for $\mathrm{F} 903=4$.

Stop mode is selected by F121: F121 $=0$ stop by deceleration time, F121 $=1$ free stop. Of which, free stop is selected by F700: F700 $=0$ instant stop, $\mathrm{F} 700=1$ delayed stop. F 701 (P39) sets delayed stop time.

Appendix 1 Trouble Shooting

When malfunction occurs to inverter or motor, users may get the type of malfunction, the bus voltage, output current and frequency of the moment that malfunction occurs through reading F720~F725, and carry out inspection and analysis according to the following table or contact manufacturer when necessary.

Table 1

Malfunctions \& Solutions

Malfunction Display	Description	Causes	Solutions
OC1	Acceleration over-current	Acceleration time too short	Prolong acceleration time
		Short circuit on the side of output	Motor cable damaged or not; motor insulation level is satisfactory to requirement or not
		Inverter's power is small	Select bigger power inverter
		Improper selection of V/F curve	Adjust V/F curve as per actual load; Reduce V/F compensation value
		Restart the motor in rotation	Restart when motor completely stops
		Overloaded	Reduce load
OC2	Deceleration over-current	Too short for deceleration time	Extend deceleration time
		high load inertia	Add proper energy consumption braking parts
OC3	Constant overcurrent	Short circuit on the side of input	Check if motor cable is damaged
		Sudden change of loading	Reduce sudden change of loading
		Abnormal loading	Check the loading
OE1	Acceleration overvoltage	higher input voltage	Check if the input voltage is normal
OE2	Deceleration overvoltage	Too short time for deceleration (compared to the capacity of regeneration)	Extend deceleration time
		high load inertia	Add proper energy consumption braking part
OE3	Over voltage of constant speed	Abnormal change of input voltage	Check input voltage or add reactor
		Big loading inertia	To add proper energy consumption braking parts
AdEr	Galvanoscopy malfunction	The wire or inserting parts between control PCB and power PCB gets loose	Check and reconnection
		Galvanoscopy elements damaged	Seek manufacturers' service
OL1	Inverter overloading	Too much overload	Reduce load
		Acceleration time too short	Extend acceleration time
		Improper V/F curves	Adjust the V/F curve, and properly lower compensation value
		Too much DC braking	Reduce DC braking current, extend braking time
		Inverter power small	Select inverter with bigger power

Table 1 continued

Malfunctions \& Solutions

Malfunction display	Description	Causes	Solutions
OL2	Motor overload	Improper V/F curve	Adjust the V/F curve, and properly lower compensation value
		General motor runs at low speed with big load for long time	Special motor is needed for long time low speed running.
		Rotation of motor is jammed or loading suddenly gets bigger.	Reduce loading or the sudden change of loading
		Incorrect setting for motor overloading protection coefficient	Correctly set the protection coefficient for motor overloading
PEr	Out-phase protection	Out-phase with 3- phase power input	Check if power input is normal; Check the wiring is correct
		Serious imbalance with 3-phase input power	Check if power input is normal
		Power off unexpectedly with inverter's input power.	Normal indication
LU	Undervoltage protection	slightly low with input voltage	Check if voltage is correct
		Power off unexpectedly with inverter input power	Normal indication
ESP	Externalemergency stop	Press "stop/reset" key not in mode of keypad control (F200 $\neq 0$)	Correctly set the functional parameters for F201\&F200
		"External Emergency stop" terminal closes	Disconnect malfunction terminal after removal of external malfunction; Change the function of "programmable input terminal"
		Press "stop/reset" in case of stalling	Normal indication
ErP	Peripheral equipment malfunction	Terminal of "Peripheral equipment malfunction" closes	Disconnect malfunction terminal after removal of external malfunction; Change the function of "programmable input terminal"
Err	Wrong user's password	Wrong input of user's password (F100)	Input user's password again
	Serious external interference	Strong interference surroundings electromagnetic with inverter's	Check if the surroundings are satisfactory for use of inverter as required in 3.1.2
OH	Over temperature	Too high surrounding temperature	Reduce surrounding temperature
		Fan damaged	Change the fan
		Installation position is not fit for ventilation	Install as per manual and improved ventilation
		Radiators too dirty	Clean the inlet and outlet and the radiators
		Power module is abnormal	Seek manufacturers' service
Cb	Contactor does not suck	Too low voltage of power network	Check the voltage
		Contactor damaged	Change the main-loop contactor
		Trouble with the control loop	Seek manufacturers' service

Table 1 continued

Malfunctions \& Solutions

Malfunctio n display	Description	Causes	Solutions
-E.r-	Communication malfunction	Baud rate setting is incorrect when communicating with 485 communication control enclosure	Change inverter's Baud rate to manufacturer's value
		Incorrect communication address setting	Unify inverter address with 485 communication control enclosure
		Malfunction occur communication circuits with	Seek manufacturers' service
Motor doesn't work		Abnormal power-network voltage	Check if power-network voltage is normal
		Wrong wiring	Check the wiring
		Overloading	Reduce loading
Power tripping		Short circuits on input side	Check the input wiring
		Too small capacity of air switch	Increase air switch capacity
		Overloading	Reduce loading
Motor works but unable to control speed		Error setting for related parameters	Correctly set related parameters as to parameter description
		Serious overloading	Reduce loading
Instable rotation of motor		Sudden increase of overloading	Reduce the change of loading
		Power of inverter is slightly small	Select inverter of bigger power
		Serious interference electromagnetic	Check if surroundings is satisfactory for use of inverter as required in 3.1.2

Appendix 2

Function Code Zoom Table

Class	Function Code	Definition	Setting Range	Mfr Value	Note
00000000000000	F100	User's Code	0~9999	8	\checkmark
	F101	Reserved			
	F102	Inverter's Rated Current (A)		Subject to inverter model	\triangle
	F103	Inverter Power (KW)	$0.20 \sim 110.0$	Power value of this inverter	\triangle
	F104	Reserved			
	F105	Software Edition No.	-	Subject to software edition	\triangle
	F106	Inverter's Input Voltage Type	1:single phase 3:three phase	$\begin{aligned} & \text { Subject to } \\ & \text { inverter model } \end{aligned}$	\triangle
	F107	Inverter's Rated Input Voltage (V)	220 or 380	$\begin{aligned} & \text { Subject to } \\ & \text { inverter model } \end{aligned}$	\triangle
	F108~F110	Reserved			
	F111	Max Frequency (Hz)	F112~400.0	60.00	\times
	F112	Min Frequency (Hz)	$0.00 \sim \operatorname{MIN}(50.00, \mathrm{~F} 111)$	0.00	\times
	F113	Digital Setting Frequency (Hz)	F112~F111	50.00	\checkmark
	F114	$1{ }^{\text {st }}$ Acceleration Time (S)	$0.1 \sim 3000$	20.0	\checkmark
	F115	$1^{\text {st }}$ Deceleration Time (S)	0.1~3000	20.0	\checkmark
	F116	$2^{\text {nd }}$ Acceleration Time (S)	$0.1 \sim 3000$	20.0	\checkmark
	F117	$2^{\text {nd }}$ Deceleration Time (S)	$0.1 \sim 3000$	20.0	\checkmark
	F118	Turnover Frequency (Hz)	$50.00 \sim 400.0$	50.00	\times
	F119	Latent Frequency (Hz)	F112~F111	5.00	\checkmark
	F120	Forward/Reverse Switchover Dead-Time (S)	$0.0 \sim 3000$	2.0	\checkmark
	F121	Stopping Mode	0 : stop by deceleration time 1: free-stop	0	\times
	F122	Reverse Running Forbidden	0 : null 1:valid	0	\times
	F123	Reserved			
	F124	Jogging Frequency (Hz)	F112~F111	5.00	\checkmark
	F125	Jogging Acceleration Time (S)	$0.1 \sim 3000$	20.0	\checkmark
	F126	Jogging Deceleration Time (S)	$0.1 \sim 3000$	20.0	\checkmark
	F127	Skip Frequency A (Hz)	$0.00 \sim$ F111	0.00	\times
	F128	Skip Width A (Hz)	$0.00 \sim 5.00$	0.00	\times
	F129	Skip Frequency B (Hz)	$0.00 \sim$ F111	0.00	\times

Class					
	Function Code	Definition	Setting Range	Mfr's Value	Note
	F130	Skip Width B (Hz)	0.00~5.00		

Class	Function Code	Definition	Setting Range	Mfr's Value	Note
芫	F205, F206	Reserved			
	F207	Keypad Direction Set	0: Forward 1: Reverse	0	\checkmark
	F208	Terminal control mode	0 : two-line type 1 1: two-line type 2 2: three-line type 1 3: three-line type 2 4:Start/stop controlled by direction pulse	0	\times
	F209	Stage-speed-Changing	0:Adjustment stage-speed forbidden 1:Adjusting stage-speed allowed	0	\times
	F210	Stage-Speed Types	0 : Multi-stage speed running 1: Auto circulation running 2: $8^{\text {th }}$-stage speed running	0	\times
	F211	Auto Circulation Running Speed Selection	$2 \sim 7$	7	\times
$\begin{aligned} & \underset{0}{0} \\ & \tilde{N}_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	F212	Auto Circulation Running Times Selection	0~9999	0	\checkmark
	F213	Free Running Selection after Auto Circulation Running	0: Stop 1: Keep running at last stage speed	0	\checkmark
	F214	k1	$0.0 \sim 10.0$	1.0	\checkmark
	F215	k2	$0.0 \sim 10.0$	1.0	\checkmark
	F216~F220	Reserved			
	F221	Count Frequency Divisions	$1 \sim 1000$	1	\times
	F222	Set Count Times	F224~9999	1	\times
	F223	Reserved			
	F224	Designated Count Times	$1 \sim$ F222	1	\times
	F225 ~F229	Reserved			
	F230	Frequency setting Step Length (Hz)	$0.01 \sim 1.00$	0.01	\times
	F231~F260	Reserved			
	F300	$1^{\text {st }}$ stage-Speed Running Direction	0: Forward 1: Reverse	0	\checkmark
	F301	$1^{\text {st }}$ stage-Speed Acceleration Time	$0.1 \sim 3000$	20.0	\checkmark
	F302	$11^{\text {st }}$ stage-Speed Running Frequency	F112~F111	5.00	\checkmark
	F303	$1{ }^{\text {st }}$ stage-Speed Running Time	$0.1 \sim 3000$	20.0	\checkmark
	F304	$1^{\text {st }}$ stage-Speed Deceleration Time	$0.1 \sim 3000$	20.0	\checkmark
	F305	$1^{\text {st }}$ stage-Speed Stop/Waiting Time	$0.0 \sim 3000$	0.0	\checkmark

Class	Function Code	Definition	Setting Range	Mfr's Value	Note
3 各 0	F306	$2^{\text {nd }}$ stage-Speed Running Direction	0: Forward 1: Reverse	1	\checkmark
	F307	$2^{\text {nd }}$ stage-Speed Acceleration Time	$0.1 \sim 3000$	20.0	\checkmark
	F308	$2^{\text {nd }}$ stage-Speed Running Frequency	F112~F111	10.00	\checkmark
	F309	$22^{\text {nd }}$ stage-Speed Running Time	$0.1 \sim 3000$	20.0	\checkmark
	F310	$2^{\text {nd }}$ stage-Speed Deceleration Time	0.1~3000	20.0	\checkmark
	F311	$2^{\text {nd }}$ stage-Speed Stop/Waiting Time	$0.0 \sim 3000$	0.0	\checkmark
	F312	$3{ }^{\text {rd }}$ stage-Speed Running Direction	0: Forward 1: Reverse	0	\checkmark
	F313	$3{ }^{\text {rd }}$ stage-Speed Acceleration Time	0.1~3000	20.0	\checkmark
	F314	$3^{\text {rd }}$ stage-Speed Running Frequency	F112~F111	15.00	\checkmark
	F315	$3{ }^{\text {rd }}$ stage-Speed Running Time	0.1~3000	20.0	\checkmark
	F316	$3{ }^{\text {rd }}$ stage-Speed Deceleration Time	$0.1 \sim 3000$	20.0	\checkmark
	F317	$3{ }^{\text {rd }}$ stage-Speed Stop/Waiting Time	$0.0 \sim 3000$	0.0	\checkmark
	F318	$4^{\text {th }}$ stage-Speed Running Direction	0: Forward 1: Reverse	1	\checkmark
	F319	$4^{\text {th }}$ stage-Speed Acceleration Time	0.1~3000	20.0	\checkmark
	F320	$4^{\text {th }}$ stage-Speed Running Frequency	F112~F111	20.00	\checkmark
	F321	$4^{\text {th }}$ stage-Speed Running Time	0.1~3000	20.0	\checkmark
	F322	$4^{\text {th }}$ stage-Speed Deceleration Time	0.1~3000	20.0	\checkmark
	F323	$4^{\text {th }}$ stage-Speed Stop/Waiting Time	$0.0 \sim 3000$	0.0	\checkmark
	F324	$5{ }^{\text {th }}$ stage-Speed Running Direction	0: Forward 1: Reverse	0	\checkmark
	F325	$5^{\text {th }}$ stage-Speed Acceleration Time	0.1~3000	20.0	\checkmark
	F326	$5^{\text {th }}$ stage-Speed Running Frequency	F112~F111	25.00	\checkmark
	F327	$5^{\text {th }}$ stage-Speed Running Time	$0.1 \sim 3000$	20.0	\checkmark
	F328	$5^{\text {th }}$ stage-Speed Deceleration Time	0.1~3000	20.0	\checkmark
	F329	$5^{\text {th }}$ stage-Speed Stop/Waiting Time	$0.0 \sim 3000$	0.0	\checkmark
	F330	$6^{\text {th }}$ stage-Speed Running Direction	0: Forward 1: Reverse	0	\checkmark
	F331	$6{ }^{\text {th }}$ stage-Speed Acceleration Time	0.1~3000	20.0	\checkmark
	F332	$6{ }^{\text {th }}$ stage-Speed Running Frequency	F112~F111	30.00	\checkmark
	F333	$6^{\text {th }}$ stage-Speed Running Time	0.1~3000	20.0	\checkmark
	F334	$6^{\text {th }}$ stage-Speed Deceleration Time	0.1~3000	20.0	\checkmark
	F335	$6^{\text {th }}$ stage-Speed Stop/Waiting Time	$0.0 \sim 3000$	0.0	\checkmark

Class	Function Code	Definition	Setting Range	Mfr's Value	Note
	F336	$7{ }^{\text {th }}$ stage-Speed Running Direction	0: Forward 1: Reverse	0	\checkmark
	F337	$7{ }^{\text {th }}$ stage-Speed Acceleration Time	$0.1 \sim 3000$	20.0	\checkmark
	F338	$7{ }^{\text {th }}$ stage-Speed Running Frequency	F112~F111	35.00	\checkmark
	F339	$7{ }^{\text {th }}$ stage-Speed Running Time	$0.1 \sim 3000$	20.0	\checkmark
	F340	$7{ }^{\text {th }}$ stage-Speed Deceleration Time	$0.1 \sim 3000$	20.0	\checkmark
	F341	$7{ }^{\text {th }}$ stage-Speed Stop/Waiting Time	$0.0 \sim 3000$	0.0	\checkmark
	F342	Selection of compound control for stage-speeds speed	0: Not Allowed 1:Allowed	0	\checkmark
	F343	Selection of compound speed control mode for stage-speeds	0:Multi-stage Speed Running Frequency + Value set for F344 1: Multi-stage speed Running Frequency + AN2 Channel Analog Values	0	\checkmark
	F344	Digital Frequency Setting For Compound Speed Control(Hz)	$0.00 \sim 20.00$	0.00	\checkmark
	F345 ~F360	Reserved			
	F400 \sim F407	Reserved			
	F408	OP1 Terminal Function Definition	0 : No function 1: Multi-speed terminal 1 2: Multi-speed terminal 2 3: Multi-speed terminal 3 Reset Free stop Reserved External Emergency Stop 8: Acceleration / Deceleration Prohibited 9: Jogging Forward Running JOGF 10: Jogging Reverse Running JOGR 11:Frequency increasing by degrees UP 12:Frequency decreasing by degrees DOWN 13: "FWD" Terminal 14: "REV" Terminal 15:Three-Line type Input Teminal of " X " 16:Switchover of Acceleration /Deceleration time 17:Peripheral equipment Malfunction 18:Coding speed control input 19: Close loop switched to open loop 20: Compound channel speed control switch to single channel speed control 21: Teminal Counting 22: Count Value Reset to Zero 23: Pulse Frequency Input terminal (only valid for OP1)	9	\times
	F409	OP2 Terminal Function Definition		1	\times
	F410	OP3 Terminal Function Definition		2	\times
	F411	OP4 Terminal Function Definition		3	\times
	F412	OP5 Terminal Function Definition		7	\times
	F413	OP6 Terminal Function Definition		13	\times
	F414	OP7 Terminal Function Definition		14	\times
	F415	OP8 Terminal Function Definition		4	\times

Class	Function Code	Definition	Setting Range	Mfr's Value	Note
	F513	Randum Carrier-Wave Selection	$0:$ Not allowed 1:Allowed	1	
	F514	DC Braking Function Selection	0: Not allowed 1: Braking during start $2:$ Braking during stop 3: Braking for Start+stop	0	

Class	Function Code	Definition	Setting Range	Mfr's Value	Note

| Class | Function
 Code | Definition | Mfr's Value | Note |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | F723 | The Last Malfunction Frequency | | |
| (Hz) | | | | |

Remarks: \times means that this function code can only be modified at stop.
\checkmark means that this function code can be modified at stop or during running.
\triangle means that this function code can only be checked but cannot be modified at stop or during running.

- means that this function code cannot be initialized when inverter's manufacturer value is restored and can only be modified manually.

Appendix 3 Selection of Braking Resistor \& Braking unit

Built-in braking units are available with some of F1500-G series inverters (some inverters of single-phase and below three-phase 18.5 KW). Power terminals of these inverters include terminals " P " and " B ". They can then be connected with braking resistors externally. Matching standards for the braking resistors are shown in Table 2 below.

Table 2
Selection of Braking Resistance

Inverter Models	Applicable Motor Power (KW)	Applicable Braking Resistance
F1500-G0002XS2B / F1500-G0002XT2B	0.2	Al Housing $80 \mathrm{~W} / 200 \Omega$
F1500-G0004XS2B / F1500-G0004XT2B	0.4	
F1500-G0007XS2B / F1500-G0007XT2B	0.75	Al Housing $80 \mathrm{~W} / 150 \Omega$
F1500-G0015XS2B / F1500-G0015XT2B	1.5	Al Housing $120 \mathrm{~W} / 120 \Omega$
F1500-G0022XS2B / F1500-G0022XT2B	2.2	Al Housing $150 \mathrm{~W} / 80 \Omega$
F1500-G0037XS2B /F1500-G0037XT2B	3.7	Al Housing $80 \mathrm{~W} / 200 \Omega$
F1500-G0004T3B	0.4	
F1500-G0007T3B	0.75	
F1500-G0015T3B	1.5	
F1500-G0022T3B	2.2	
F1500-G0037T3B	3.7	
F1500-G0040T3B	4.0	Al Housing $250 \mathrm{~W} / 120 \Omega$
F1500-G0055T3B	5.5	Al Housing $500 \mathrm{~W} / 120 \Omega$
F1500-G0075T3B	7.5	Al Housing $1 \mathrm{KW} / 90 \Omega$
F1500-G0110T3C	11	Al Housing $1.5 \mathrm{KW} / 80 \Omega$
F1500-G0150T3C	15	

Built－in braking units are not available with inverters above three－phase 18．5KW．Power terminals of these inverters include terminals＂ P ＂and＂ B ＂．They need to be connected with braking resistors externally． Terminals＂ P ＂（ or＂+ ＂）and＂ N ＂（or＂－＂）of braking unit are connected with inverter＇s terminals＂ P ＂and＂ N ＂． Terminals＂ P ＂and＂ B ＂of braking unit are connected with braking resistor．Matching standards are shown in Table 3 below．

Table 3
Selection of Braking unit

Inverter Models	Applicable Motor Power （KW）	Applicable Braking unit Models	Applicable Resistance for Braking unit
F1500－G0110T3C	11		
F1500－G0150T3C	15		
F1500－G0185T3C	18.5		
F1500－G0220T3C	22	HFBU－DR0103	$65 \Omega / 4 \mathrm{KW}$
F1500－G0300T3C	30		
F1500－G0370T3C	37		
F1500－G0450T3C	45	HFBU－DR0201	$40 \Omega / 6 \mathrm{KW}$
F1500－G0550T3C	55		
F1500－G0750T3C	75	HFBU－DR0301	$8 \Omega / 9 \mathrm{KW}$

注：功率小于（等于） 7.5 KW 的变频器一般不需要制动单元，若必需，则其对应型号为 HFBU－DR0101，制动电阻为 $90 \Omega / 1.5 \mathrm{KW}$

Note：If braking unit is necessary for inverter（power less than 7.5 kw inverter）because of too heavy load，the corresponding type of braking unit is HFBU－DR0101 and braking resistance is $90 \Omega / 1.5 \mathrm{KW}$

Appendix 4

485 Communication Enclosure

External dimension is " $68 \times 100 \times 17 \mathrm{~mm}$ " and opening dimension is " $65 \times 97 \mathrm{~mm}$ " for operation panel of 485 Communication Enclosure, as indicated in Fig 1-1.

The followings are special functions and use instructions for 485 Communication Enclosure. Refer to IV. Keypad Control Unit on P_{17} for similar functions and instructions of ordinary keypad control units.

Fig 1-1 485 Communication Enclosure

Table 4
Special Keys Descriptions

Keys	Designation	Descriptions
Mode	"Mode" Key	Used with "set" key. Enclosure shows communication address "d x x x".
Set	"Set" Key	Used with "mode" key. Enclosure shows communication address "d x x x"; Press "set" key while displaying "d x x x". Enclosure shows contents of the corresponding inverter.
\boldsymbol{Q}	"Up"Key	Press "up" and "down" keys while displaying "d x x x" to select other communication address.
$\boldsymbol{T D o w n " K e y ~}$		

Table 5

Step	Key	Operation	Display
1		Press "mode" and "set" keys at the same time. 485 Communication Enclosure shows communication address " d x x x".	
2	or Set	Press " $\boldsymbol{\Delta} / \boldsymbol{\nabla}$ " key to select other communication address. Press "set" key to show contents of the corresponding inverter.	

Table $6 \quad$ Special Panel Displays \& Descriptions

Display Items	Descriptions
$-\mathbf{H F}-$	Indicating inverter's resetting process: when single control, contents of this inverter will be shown after reset goes normal; In case of broadcast control, default communication address "d001" will be shown after reset goes normal.
$-\mathbf{b c}-$	Broadcast control code. (When broadcast address is 255 for 485 communication enclosure and broadcast command is carried out, the enclosure can effect control over all inverters in the network at the same time)
-E.r-	Indicating that malfunction occurs with 485 communication and inverter's communication (refer to Table 1 on P P for causes of malfunction and solutions).

[^0]: Fig 6-2 Auto-Circulating Operation (stop/wait time=0)

